These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


492 related items for PubMed ID: 8935183

  • 1. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T.
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [Abstract] [Full Text] [Related]

  • 2. Effect of nonaxisymmetric hematocrit distribution on non-Newtonian blood flow in small tubes.
    Das B, Johnson PC, Popel AS.
    Biorheology; 1998; 35(1):69-87. PubMed ID: 10211130
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D, Frömer D.
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [Abstract] [Full Text] [Related]

  • 5. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall.
    Sharan M, Popel AS.
    Biorheology; 2001; 38(5-6):415-28. PubMed ID: 12016324
    [Abstract] [Full Text] [Related]

  • 6. A model for motion and sedimentation of cylindrical red-cell aggregates during slow blood flow in narrow horizontal tubes.
    Secomb TW, el-Kareh AW.
    J Biomech Eng; 1994 Aug; 116(3):243-9. PubMed ID: 7799623
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes.
    Murata T, Secomb TW.
    Biorheology; 1989 Aug; 26(2):247-59. PubMed ID: 2605331
    [Abstract] [Full Text] [Related]

  • 9. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements.
    Berli CL, Quemada D.
    Biorheology; 2001 Aug; 38(1):27-38. PubMed ID: 11381163
    [Abstract] [Full Text] [Related]

  • 10. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity.
    Janzen J, Elliott TG, Carter CJ, Brooks DE.
    Biorheology; 2000 Aug; 37(3):225-37. PubMed ID: 11026942
    [Abstract] [Full Text] [Related]

  • 11. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M, Abkarian M, Bickraj K, Stone HA.
    Biorheology; 2006 Aug; 43(2):147-59. PubMed ID: 16687784
    [Abstract] [Full Text] [Related]

  • 12. [Importance of non-Newtonian rheologic properties of blood in erythrocyte transport].
    Wang X, Stoltz JF.
    J Mal Vasc; 1994 Aug; 19(2):137-41. PubMed ID: 8077863
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube.
    Moyers-Gonzalez MA, Owens RG.
    Biorheology; 2010 Aug; 47(1):39-71. PubMed ID: 20448297
    [Abstract] [Full Text] [Related]

  • 15. Effects of fibrinogen and alpha2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates.
    Kirschkamp T, Schmid-Schönbein H, Weinberger A, Smeets R.
    Ther Apher Dial; 2008 Oct; 12(5):360-7. PubMed ID: 18937718
    [Abstract] [Full Text] [Related]

  • 16. Study of red blood cell aggregation by admittance measurements.
    Pribush A, Meyerstein D, Meyerstein N.
    Biorheology; 1996 Oct; 33(2):139-51. PubMed ID: 8679961
    [Abstract] [Full Text] [Related]

  • 17. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E, Yianneskis M.
    Clin Hemorheol Microcirc; 2008 Oct; 39(1-4):235-42. PubMed ID: 18503131
    [Abstract] [Full Text] [Related]

  • 18. Effect of enhanced red blood cell aggregation on blood flow resistance in an isolated-perfused guinea pig heart preparation.
    Yalcin O, Meiselman HJ, Armstrong JK, Baskurt OK.
    Biorheology; 2005 Oct; 42(6):511-20. PubMed ID: 16369087
    [Abstract] [Full Text] [Related]

  • 19. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM.
    Theor Biol Med Model; 2005 Mar 30; 2():13. PubMed ID: 15799779
    [Abstract] [Full Text] [Related]

  • 20. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG, Streekstra GJ, Strackee J, Rutten MC, Stijnen JM, Grimbergen CA.
    IEEE Trans Biomed Eng; 2003 Jan 30; 50(1):97-106. PubMed ID: 12617529
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.