These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. Calcif Tissue Int; 1997 Dec; 61(6):480-6. PubMed ID: 9383275 [Abstract] [Full Text] [Related]
3. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Osteoporos Int; 2005 Dec; 16(12):2031-8. PubMed ID: 16088360 [Abstract] [Full Text] [Related]
7. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, Burr DB. Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405 [Abstract] [Full Text] [Related]
9. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue. Taylor EA, Lloyd AA, Salazar-Lara C, Donnelly E. Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618 [Abstract] [Full Text] [Related]
10. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain. Rey C, Shimizu M, Collins B, Glimcher MJ. Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326 [Abstract] [Full Text] [Related]
11. Bone tissue aging affects mineralization of cement lines. Milovanovic P, Vom Scheidt A, Mletzko K, Sarau G, Püschel K, Djuric M, Amling M, Christiansen S, Busse B. Bone; 2018 May; 110():187-193. PubMed ID: 29427789 [Abstract] [Full Text] [Related]
13. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Penel G, Leroy G, Rey C, Bres E. Calcif Tissue Int; 1998 Dec; 63(6):475-81. PubMed ID: 9817941 [Abstract] [Full Text] [Related]
14. Evidence of altered matrix composition in iliac crest biopsies from patients with idiopathic juvenile osteoporosis. Garcia I, Chiodo V, Ma Y, Boskey A. Connect Tissue Res; 2016 Dec; 57(1):28-37. PubMed ID: 26539896 [Abstract] [Full Text] [Related]
17. Characterization of Synthetic Hydroxyapatite Fibers Using High-Resolution, Polarized Raman Spectroscopy. Shah FA. Appl Spectrosc; 2021 Apr; 75(4):475-479. PubMed ID: 32588640 [Abstract] [Full Text] [Related]
18. The effects of chronic hypoperfusion on rat cranial bone mineral and organic matrix. A Fourier transform infrared spectroscopy study. Boyar H, Zorlu F, Mut M, Severcan F. Anal Bioanal Chem; 2004 Jun; 379(3):433-8. PubMed ID: 15042274 [Abstract] [Full Text] [Related]
19. Fourier transform infrared microspectroscopic investigation of the maturation of nonstoichiometric apatites in mineralized tissues: a horse dentin study. Magne D, Pilet P, Weiss P, Daculsi G. Bone; 2001 Dec; 29(6):547-52. PubMed ID: 11728925 [Abstract] [Full Text] [Related]
20. Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. Bala Y, Depalle B, Douillard T, Meille S, Clément P, Follet H, Chevalier J, Boivin G. J Mech Behav Biomed Mater; 2011 Oct; 4(7):1473-82. PubMed ID: 21783157 [Abstract] [Full Text] [Related] Page: [Next] [New Search]