These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


89 related items for PubMed ID: 8952468

  • 1. The renal sodium/phosphate symporters: evidence for different functional oligomeric states.
    Jetté M, Vachon V, Potier M, Béliveau R.
    Biochemistry; 1996 Dec 03; 35(48):15209-14. PubMed ID: 8952468
    [Abstract] [Full Text] [Related]

  • 2. Radiation-inactivation analysis of the oligomeric structure of the renal sodium/D-glucose symporter.
    Jetté M, Vachon V, Potier M, Béliveau R.
    Biochim Biophys Acta; 1997 Jul 25; 1327(2):242-8. PubMed ID: 9271266
    [Abstract] [Full Text] [Related]

  • 3. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K, Kim KR, Kim JY, Park YS.
    Toxicol Appl Pharmacol; 1997 Aug 25; 145(2):255-9. PubMed ID: 9266797
    [Abstract] [Full Text] [Related]

  • 4. Effect of ischemia-reperfusion on the renal brush-border membrane sodium-dependent phosphate cotransporter NaPi-2.
    Xiao Y, Desrosiers RR, Beliveau R.
    Can J Physiol Pharmacol; 2001 Mar 25; 79(3):206-12. PubMed ID: 11294596
    [Abstract] [Full Text] [Related]

  • 5. Effect of pH on the low and high affinity Na+-phosphate co-transport system in rat renal cortex.
    Bindels RJ, van den Broek LA, van Os CH.
    Prog Clin Biol Res; 1988 Mar 25; 252():359-64. PubMed ID: 3347626
    [No Abstract] [Full Text] [Related]

  • 6. Molecular size of the functional complex and protein subunits of the renal phosphate symporter.
    Delisle MC, Giroux S, Vachon V, Boyer C, Potier M, Béliveau R.
    Biochemistry; 1994 Aug 09; 33(31):9105-9. PubMed ID: 8049213
    [Abstract] [Full Text] [Related]

  • 7. Ontogeny of phosphate transport by rat liver plasma membrane vesicles.
    Ghishan FK, Dykes W.
    J Dev Physiol; 1993 May 09; 19(5):197-201. PubMed ID: 8083496
    [Abstract] [Full Text] [Related]

  • 8. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E.
    Biochem J; 1999 Nov 01; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [Abstract] [Full Text] [Related]

  • 9. Phosphate transport adaptation in intestinal brush border membrane vesicles (BBMV) and plasma levels of 1,25-dihydroxycholecalciferol.
    Danisi G, Caverzasio J, Trechsel U, Straub R, Bonjour JP.
    Prog Clin Biol Res; 1988 Nov 01; 252():65-6. PubMed ID: 3347633
    [No Abstract] [Full Text] [Related]

  • 10. Glucocorticoid-induced alterations of renal sulfate transport.
    Sagawa K, Darling IM, Murer H, Morris ME.
    J Pharmacol Exp Ther; 2000 Aug 01; 294(2):658-63. PubMed ID: 10900245
    [Abstract] [Full Text] [Related]

  • 11. The renal brush border membrane sodium/sulfate cotransporter functions in situ as a homotetramer.
    Jetté M, Pelletier J, Potier M, Béliveau R.
    Int J Biochem Cell Biol; 1996 Oct 01; 28(10):1151-4. PubMed ID: 8930139
    [Abstract] [Full Text] [Related]

  • 12. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine.
    Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J.
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar 01; 288(3):G501-6. PubMed ID: 15701624
    [Abstract] [Full Text] [Related]

  • 13. Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems.
    Ries M, Wenzel U, Daniel H.
    J Pharmacol Exp Ther; 1994 Dec 01; 271(3):1327-33. PubMed ID: 7996442
    [Abstract] [Full Text] [Related]

  • 14. Molecular mechanisms in renal phosphate reabsorption.
    Murer H, Biber J.
    Nephrol Dial Transplant; 1995 Dec 01; 10(9):1501-4. PubMed ID: 8559450
    [No Abstract] [Full Text] [Related]

  • 15. The renal type IIa Na/Pi cotransporter: structure-function relationships.
    Murer H, Köhler K, Lambert G, Stange G, Biber J, Forster I.
    Cell Biochem Biophys; 2002 Dec 01; 36(2-3):215-20. PubMed ID: 12139407
    [Abstract] [Full Text] [Related]

  • 16. Intraperitoneal administration of recombinant receptor-associated protein causes phosphaturia via an alteration in subcellular distribution of the renal sodium phosphate co-transporter.
    Yamagata M, Ozono K, Hashimoto Y, Miyauchi Y, Kondou H, Michigami T.
    J Am Soc Nephrol; 2005 Aug 01; 16(8):2338-45. PubMed ID: 15976002
    [Abstract] [Full Text] [Related]

  • 17. Sodium-dependent phosphate transport in a rat kidney endosomal fraction.
    Abraham MI, Burckhardt G, Kempson SA.
    Kidney Int; 1992 Nov 01; 42(5):1070-8. PubMed ID: 1453594
    [Abstract] [Full Text] [Related]

  • 18. Molecular size of the renal sodium/phosphate symporter in native and reconstituted systems.
    Delisle MC, Vachon V, Giroux S, Potier M, Laprade R, Béliveau R.
    Biochim Biophys Acta; 1992 Feb 17; 1104(1):132-6. PubMed ID: 1550840
    [Abstract] [Full Text] [Related]

  • 19. Reconstitution of the renal brush-border membrane sodium/phosphate co-transporter.
    Vachon V, Delisle MC, Laprade R, Béliveau R.
    Biochem J; 1991 Sep 01; 278 ( Pt 2)(Pt 2):543-8. PubMed ID: 1832858
    [Abstract] [Full Text] [Related]

  • 20. p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1.
    Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, Miyamoto Ki, Takeda E, Tsuji A.
    Biochem Biophys Res Commun; 2000 Apr 02; 270(1):254-9. PubMed ID: 10733936
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.