These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 8964185

  • 1. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes.
    Takeda N, Dixon IM, Hata T, Elimban V, Shah KR, Dhalla NS.
    Diabetes Res Clin Pract; 1996 Feb; 30 Suppl():113-22. PubMed ID: 8964185
    [Abstract] [Full Text] [Related]

  • 2. Cardiac membrane Ca(2+)-transport in alloxan-induced diabetes in rats.
    Golfman LS, Takeda N, Dhalla NS.
    Diabetes Res Clin Pract; 1996 Jul; 31 Suppl():S73-7. PubMed ID: 8864644
    [Abstract] [Full Text] [Related]

  • 3. Differential changes in cardiac myofibrillar and sarcoplasmic reticular gene expression in alloxan-induced diabetes.
    Golfman L, Dixon IM, Takeda N, Chapman D, Dhalla NS.
    Mol Cell Biochem; 1999 Oct; 200(1-2):15-25. PubMed ID: 10569179
    [Abstract] [Full Text] [Related]

  • 4. Modification of the function of cardiac subcellular organelles by insulin.
    Pierce GN, Ganguly PK, Dzurba A, Dhalla NS.
    Adv Myocardiol; 1985 Oct; 6():113-25. PubMed ID: 2581295
    [Abstract] [Full Text] [Related]

  • 5. Cardiac sarcolemmal Na(+)-Ca2+ exchange and Na(+)-K+ ATPase activities and gene expression in alloxan-induced diabetes in rats.
    Golfman L, Dixon IM, Takeda N, Lukas A, Dakshinamurti K, Dhalla NS.
    Mol Cell Biochem; 1998 Nov; 188(1-2):91-101. PubMed ID: 9823015
    [Abstract] [Full Text] [Related]

  • 6. Possible mechanism responsible for mechanical dysfunction of ischemic myocardium: a role of oxygen free radicals.
    Okabe E, Fujimaki R, Murayama M, Ito H.
    Jpn Circ J; 1989 Sep; 53(9):1132-7. PubMed ID: 2557460
    [Abstract] [Full Text] [Related]

  • 7. Influence of long-term treatment of imidapril on mortality, cardiac function, and gene expression in congestive heart failure due to myocardial infarction.
    Ren B, Shao Q, Ganguly PK, Tappia PS, Takeda N, Dhalla NS.
    Can J Physiol Pharmacol; 2004 Dec; 82(12):1118-27. PubMed ID: 15644955
    [Abstract] [Full Text] [Related]

  • 8. Involvement of sarcoplasmic reticulum in changing intracellular calcium due to Na+/K+-ATPase inhibition in cardiomyocytes.
    Saini-Chohan HK, Goyal RK, Dhalla NS.
    Can J Physiol Pharmacol; 2010 Jul; 88(7):702-15. PubMed ID: 20651818
    [Abstract] [Full Text] [Related]

  • 9. Mechanisms that may be involved in calcium tolerance of the diabetic heart.
    Ziegelhöffer A, Ravingerová T, Styk J, Seboková J, Waczulíková I, Breier A, Dzurba A, Volkovová K, Cársky J, Turecký L.
    Mol Cell Biochem; 1997 Nov; 176(1-2):191-8. PubMed ID: 9406161
    [Abstract] [Full Text] [Related]

  • 10. Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart.
    Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS.
    Diabetes; 2001 Sep; 50(9):2133-8. PubMed ID: 11522681
    [Abstract] [Full Text] [Related]

  • 11. Influence of verapamil on some subcellular defects in diabetic cardiomyopathy.
    Afzal N, Pierce GN, Elimban V, Beamish RE, Dhalla NS.
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E453-8. PubMed ID: 2523196
    [Abstract] [Full Text] [Related]

  • 12. Blockade of the renin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulum remodeling in chronic diabetes.
    Liu X, Suzuki H, Sethi R, Tappia PS, Takeda N, Dhalla NS.
    Ann N Y Acad Sci; 2006 Nov; 1084():141-54. PubMed ID: 17151298
    [Abstract] [Full Text] [Related]

  • 13. Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages.
    Narayanan N.
    Mech Ageing Dev; 1987 Apr; 38(2):127-43. PubMed ID: 2955175
    [Abstract] [Full Text] [Related]

  • 14. Remodelling of the sarcolemma in diabetic rat hearts: the role of membrane fluidity.
    Ziegelhöffer-Mihalovicová B, Waczulíková I, Sikurová L, Styk J, Cársky J, Ziegelhöffer A.
    Mol Cell Biochem; 2003 Jul; 249(1-2):175-82. PubMed ID: 12956413
    [Abstract] [Full Text] [Related]

  • 15. Alterations in phospholipid N-methylation of cardiac subcellular membranes due to experimentally induced diabetes in rats.
    Panagia V, Taira Y, Ganguly PK, Tung S, Dhalla NS.
    J Clin Invest; 1990 Sep; 86(3):777-84. PubMed ID: 2144301
    [Abstract] [Full Text] [Related]

  • 16. Mechanisms of cardiodepression by an Na+-H+ exchange inhibitor methyl-N-isobutyl amiloride (MIA) on the heart: lack of beneficial effects in ischemia-reperfusion injury.
    Saini HK, Elimban V, Ozcelikay AT, Dhalla NS.
    Can J Physiol Pharmacol; 2007 Jan; 85(1):67-78. PubMed ID: 17487246
    [Abstract] [Full Text] [Related]

  • 17. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H, Makino N, Hata T, Matsui H, Yano K, Yanaga T.
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [Abstract] [Full Text] [Related]

  • 18. Melatonin prevents the suppression of cardiac Ca(2+)-stimulated ATPase activity induced by alloxan.
    Chen LD, Kumar P, Reiter RJ, Tan DX, Manchester LC, Chambers JP, Poeggeler B, Saarela S.
    Am J Physiol; 1994 Jul; 267(1 Pt 1):E57-62. PubMed ID: 8048513
    [Abstract] [Full Text] [Related]

  • 19. Modification of intracellular calcium concentration in cardiomyocytes by inhibition of sarcolemmal Na+/H+ exchanger.
    Saini HK, Dhalla NS.
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2790-800. PubMed ID: 16861694
    [Abstract] [Full Text] [Related]

  • 20. Experimental congestive heart failure due to myocardial infarction: sarcolemmal receptors and cation transporters.
    Dhalla NS, Dixon IM, Rupp H, Barwinsky J.
    Basic Res Cardiol; 1991 Dec; 86 Suppl 3():13-23. PubMed ID: 1664205
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.