These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


88 related items for PubMed ID: 8968383

  • 1. Interaction of fluorescein with the dicarboxylate carrier in rat kidney cortex mitochondria.
    Masereeuw R, Saleming WC, Miller DS, Russel FG.
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1559-65. PubMed ID: 8968383
    [Abstract] [Full Text] [Related]

  • 2. Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation.
    Masereeuw R, van den Bergh EJ, Bindels RJ, Russel FG.
    J Pharmacol Exp Ther; 1994 Jun; 269(3):1261-7. PubMed ID: 8014869
    [Abstract] [Full Text] [Related]

  • 3. Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover.
    Masereeuw R, Moons MM, Toomey BH, Russel FG, Miller DS.
    J Pharmacol Exp Ther; 1999 May; 289(2):1104-11. PubMed ID: 10215693
    [Abstract] [Full Text] [Related]

  • 4. Evidence for differential regulation of renal proximal tubular p-aminohippurate and sodium-dependent dicarboxylate transport.
    Gabriëls G, Werners A, Mauss S, Greven J.
    J Pharmacol Exp Ther; 1999 Aug; 290(2):710-5. PubMed ID: 10411582
    [Abstract] [Full Text] [Related]

  • 5. Metabolite anion carriers mediate the uptake of the anionic drug fluorescein in renal cortical mitochondria.
    Terlouw SA, Tanriseven O, Russel FG, Masereeuw R.
    J Pharmacol Exp Ther; 2000 Mar; 292(3):968-73. PubMed ID: 10688611
    [Abstract] [Full Text] [Related]

  • 6. Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers.
    Chen Z, Lash LH.
    J Pharmacol Exp Ther; 1998 May; 285(2):608-18. PubMed ID: 9580605
    [Abstract] [Full Text] [Related]

  • 7. Interaction of Alkyl/Arylphosphonates, phosphonocarboxylates and diphosphonates with different anion transport systems in the proximal renal tubule.
    Ullrich KJ, Rumrich G, Burke TR, Shirazi-Beechey SP, Lang H.
    J Pharmacol Exp Ther; 1997 Dec; 283(3):1223-9. PubMed ID: 9399997
    [Abstract] [Full Text] [Related]

  • 8. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.
    Groves CE, Morales MN.
    J Pharmacol Exp Ther; 1999 Nov; 291(2):555-61. PubMed ID: 10525071
    [Abstract] [Full Text] [Related]

  • 9. [Characteristics of the interaction between 2-alkylmalonates and the substrate-binding site of the dicarboxylate carrier of rat liver mitochondria].
    Shol'ts KF, Mammaev DV, Bondarenko DI, Lagutina LS.
    Biokhimiia; 1990 Oct; 55(10):1832-40. PubMed ID: 2078627
    [Abstract] [Full Text] [Related]

  • 10. Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter.
    Lash LH, Putt DA, Matherly LH.
    J Pharmacol Exp Ther; 2002 Nov; 303(2):476-86. PubMed ID: 12388626
    [Abstract] [Full Text] [Related]

  • 11. [Effect of acetate on Na+-independent organic acid transport in the proximal tubules of the rat kidney].
    Nikiforov AA.
    Tsitologiia; 1982 Apr; 24(4):449-55. PubMed ID: 7090046
    [Abstract] [Full Text] [Related]

  • 12. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E, Wada M, Shimada A, Katsukawa H, Okada N, Yamamoto A, Ganapathy V, Fujita T.
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [Abstract] [Full Text] [Related]

  • 13. Real-time assessment of alpha-ketoglutarate effect on organic anion secretion in perfused rabbit proximal tubules.
    Shuprisha A, Lynch RM, Wright SH, Dantzler WH.
    Am J Physiol; 1999 Oct; 277(4):F513-23. PubMed ID: 10516275
    [Abstract] [Full Text] [Related]

  • 14. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules.
    Imaoka T, Kusuhara H, Adachi-Akahane S, Hasegawa M, Morita N, Endou H, Sugiyama Y.
    J Am Soc Nephrol; 2004 Aug; 15(8):2012-22. PubMed ID: 15284287
    [Abstract] [Full Text] [Related]

  • 15. Modulation of mitochondrial glutathione status and cellular energetics in primary cultures of proximal tubular cells from remnant kidney of uninephrectomized rats.
    Benipal B, Lash LH.
    Biochem Pharmacol; 2013 May 01; 85(9):1379-88. PubMed ID: 23419872
    [Abstract] [Full Text] [Related]

  • 16. Transport of organic anions across the basolateral membrane of proximal tubule cells.
    Burckhardt BC, Burckhardt G.
    Rev Physiol Biochem Pharmacol; 2003 May 01; 146():95-158. PubMed ID: 12605306
    [Abstract] [Full Text] [Related]

  • 17. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport.
    Chen Z, Putt DA, Lash LH.
    Arch Biochem Biophys; 2000 Jan 01; 373(1):193-202. PubMed ID: 10620338
    [Abstract] [Full Text] [Related]

  • 18. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA, Santos MS, Alpoim MC, Madeira VM, Vicente JA.
    J Biochem Mol Toxicol; 2002 Jan 01; 16(2):53-63. PubMed ID: 11979422
    [Abstract] [Full Text] [Related]

  • 19. Fluorescence imaging study of organic anion transport from renal proximal tubule cell to lumen.
    Miller DS, Letcher S, Barnes DM.
    Am J Physiol; 1996 Sep 01; 271(3 Pt 2):F508-20. PubMed ID: 8853412
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.