These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 8968598

  • 1. Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide.
    Nicol F, Nir S, Szoka FC.
    Biophys J; 1996 Dec; 71(6):3288-301. PubMed ID: 8968598
    [Abstract] [Full Text] [Related]

  • 2. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W, Nicol F, Szoka FC.
    Adv Drug Deliv Rev; 2004 Apr 23; 56(7):967-85. PubMed ID: 15066755
    [Abstract] [Full Text] [Related]

  • 3. Surface aggregation and membrane penetration by peptides: relation to pore formation and fusion.
    Nir S, Nicol F, Szoka FC.
    Mol Membr Biol; 1999 Apr 23; 16(1):95-101. PubMed ID: 10332743
    [Abstract] [Full Text] [Related]

  • 4. Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles.
    Nicol F, Nir S, Szoka FC.
    Biophys J; 2000 Feb 23; 78(2):818-29. PubMed ID: 10653794
    [Abstract] [Full Text] [Related]

  • 5. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA.
    Parente RA, Nir S, Szoka FC.
    Biochemistry; 1990 Sep 18; 29(37):8720-8. PubMed ID: 2271552
    [Abstract] [Full Text] [Related]

  • 6. Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay.
    Nicol F, Nir S, Szoka FC.
    Biophys J; 1999 Apr 18; 76(4):2121-41. PubMed ID: 10096907
    [Abstract] [Full Text] [Related]

  • 7. pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide.
    Parente RA, Nir S, Szoka FC.
    J Biol Chem; 1988 Apr 05; 263(10):4724-30. PubMed ID: 2450874
    [Abstract] [Full Text] [Related]

  • 8. Reversible surface aggregation in pore formation by pardaxin.
    Rapaport D, Peled R, Nir S, Shai Y.
    Biophys J; 1996 Jun 05; 70(6):2502-12. PubMed ID: 8744290
    [Abstract] [Full Text] [Related]

  • 9. Design of a pH-sensitive pore-forming peptide with improved performance.
    Haas DH, Murphy RM.
    J Pept Res; 2004 Jan 05; 63(1):9-16. PubMed ID: 14984568
    [Abstract] [Full Text] [Related]

  • 10. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T, Lewis RN, Hodges RS, McElhaney RN.
    Biochemistry; 2005 Feb 15; 44(6):2103-12. PubMed ID: 15697236
    [Abstract] [Full Text] [Related]

  • 11. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence.
    Parente RA, Nadasdi L, Subbarao NK, Szoka FC.
    Biochemistry; 1990 Sep 18; 29(37):8713-9. PubMed ID: 2271551
    [Abstract] [Full Text] [Related]

  • 12. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies.
    Manzini MC, Perez KR, Riske KA, Bozelli JC, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM.
    Biochim Biophys Acta; 2014 Jul 18; 1838(7):1985-99. PubMed ID: 24743023
    [Abstract] [Full Text] [Related]

  • 13. Templated assembly of the pH-sensitive membrane-lytic peptide GALA.
    Haas DH, Murphy RM.
    J Pept Res; 2004 Jun 18; 63(6):451-9. PubMed ID: 15175017
    [Abstract] [Full Text] [Related]

  • 14. pH-dependent bilayer destabilization by an amphipathic peptide.
    Subbarao NK, Parente RA, Szoka FC, Nadasdi L, Pongracz K.
    Biochemistry; 1987 Jun 02; 26(11):2964-72. PubMed ID: 2886149
    [Abstract] [Full Text] [Related]

  • 15. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC, Selsted ME, White SH.
    Protein Sci; 1994 Sep 02; 3(9):1362-73. PubMed ID: 7833799
    [Abstract] [Full Text] [Related]

  • 16. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA, van Laak AN, Rijkers DT, Killian JA, de Kroon AI, de Kruijff B.
    Biochemistry; 2003 Jan 14; 42(1):231-7. PubMed ID: 12515559
    [Abstract] [Full Text] [Related]

  • 17. Interactions of peptides with liposomes: pore formation and fusion.
    Nir S, Nieva JL.
    Prog Lipid Res; 2000 Mar 14; 39(2):181-206. PubMed ID: 10775764
    [Abstract] [Full Text] [Related]

  • 18. Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. An infrared-spectroscopic approach.
    Goormaghtigh E, De Meutter J, Szoka F, Cabiaux V, Parente RA, Ruysschaert JM.
    Eur J Biochem; 1991 Jan 30; 195(2):421-9. PubMed ID: 1997324
    [Abstract] [Full Text] [Related]

  • 19. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides.
    Wieprecht T, Dathe M, Epand RM, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M.
    Biochemistry; 1997 Oct 21; 36(42):12869-80. PubMed ID: 9335545
    [Abstract] [Full Text] [Related]

  • 20. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M, Schwieger C, Meister A, Karlsson G, Blume A.
    Biophys Chem; 2009 Sep 21; 144(1-2):27-37. PubMed ID: 19560854
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.