These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 8970919

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC, Lakes RS, Brand RA, Stewart KJ.
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [Abstract] [Full Text] [Related]

  • 9. Micromechanics modeling of Haversian cortical bone properties.
    Hogan HA.
    J Biomech; 1992 May; 25(5):549-56. PubMed ID: 1592860
    [Abstract] [Full Text] [Related]

  • 10. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y, Wang W, Ding S, Wang X, Chen Q, Li X.
    Biomed Eng Online; 2018 Jul 17; 17(1):97. PubMed ID: 30016971
    [Abstract] [Full Text] [Related]

  • 11. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue.
    Kufahl RH, Saha S.
    J Biomech; 1990 Jul 17; 23(2):171-80. PubMed ID: 2312521
    [Abstract] [Full Text] [Related]

  • 12. Experimental determination of the permeability in the lacunar-canalicular porosity of bone.
    Gailani G, Benalla M, Mahamud R, Cowin SC, Cardoso L.
    J Biomech Eng; 2009 Oct 17; 131(10):101007. PubMed ID: 19831477
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P.
    J Mech Behav Biomed Mater; 2015 Oct 17; 50():104-22. PubMed ID: 26119589
    [Abstract] [Full Text] [Related]

  • 16. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis.
    Yu W, Wu X, Cen H, Guo Y, Li C, Wang Y, Qin Y, Chen W.
    Biomed Eng Online; 2019 Dec 23; 18(1):122. PubMed ID: 31870380
    [Abstract] [Full Text] [Related]

  • 17. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S, Cowin SC, Zeng Y.
    J Biomech; 1994 Mar 23; 27(3):339-60. PubMed ID: 8051194
    [Abstract] [Full Text] [Related]

  • 18. Behavior of fluid in stressed bone and cellular stimulation.
    Johnson MW.
    Calcif Tissue Int; 1984 Mar 23; 36 Suppl 1():S72-6. PubMed ID: 6430527
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.