These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


935 related items for PubMed ID: 8973192

  • 1. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues.
    Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP, Henrissat B, Braithwaite KL, Gilbert HJ.
    Biochemistry; 1996 Dec 17; 35(50):16195-204. PubMed ID: 8973192
    [Abstract] [Full Text] [Related]

  • 2. Evidence that galactanase A from Pseudomonas fluorescens subspecies cellulosa is a retaining family 53 glycosyl hydrolase in which E161 and E270 are the catalytic residues.
    Braithwaite KL, Barna T, Spurway TD, Charnock SJ, Black GW, Hughes N, Lakey JH, Virden R, Hazlewood GP, Henrissat B, Gilbert HJ.
    Biochemistry; 1997 Dec 09; 36(49):15489-500. PubMed ID: 9398278
    [Abstract] [Full Text] [Related]

  • 3. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D, Pell G, Dupree P, Goubet F, Martín-Orúe SM, Armand S, Gilbert HJ.
    Biochem J; 2003 May 01; 371(Pt 3):1027-43. PubMed ID: 12523937
    [Abstract] [Full Text] [Related]

  • 4. A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa.
    Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ.
    Biochem J; 1995 Feb 01; 305 ( Pt 3)(Pt 3):1005-10. PubMed ID: 7848261
    [Abstract] [Full Text] [Related]

  • 5. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD.
    Biochemistry; 2006 Oct 17; 45(41):12470-9. PubMed ID: 17029402
    [Abstract] [Full Text] [Related]

  • 6. Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues.
    Paal K, Ito M, Withers SG.
    Biochem J; 2004 Feb 15; 378(Pt 1):141-9. PubMed ID: 14561218
    [Abstract] [Full Text] [Related]

  • 7. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure.
    Krooshof GH, Kwant EM, Damborský J, Koca J, Janssen DB.
    Biochemistry; 1997 Aug 05; 36(31):9571-80. PubMed ID: 9236003
    [Abstract] [Full Text] [Related]

  • 8. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM, McIntosh EM, Muscat GE.
    J Mol Biol; 1999 Apr 30; 288(2):275-87. PubMed ID: 10329142
    [Abstract] [Full Text] [Related]

  • 9. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi.
    Zechel DL, Reid SP, Stoll D, Nashiru O, Warren RA, Withers SG.
    Biochemistry; 2003 Jun 17; 42(23):7195-204. PubMed ID: 12795616
    [Abstract] [Full Text] [Related]

  • 10. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ, Lee YJ, Chol JJ, Seo MS, Lee MS, Kim GA, Kwon ST.
    J Microbiol Biotechnol; 2008 Feb 17; 18(2):287-94. PubMed ID: 18309273
    [Abstract] [Full Text] [Related]

  • 11. A single amino acid substitution in the human and a bacterial hypoxanthine phosphoribosyltransferase modulates specificity for the binding of guanine.
    Lee CC, Craig SP, Eakin AE.
    Biochemistry; 1998 Mar 10; 37(10):3491-8. PubMed ID: 9521670
    [Abstract] [Full Text] [Related]

  • 12. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling.
    Hadi T, Dahl U, Mayer C, Tanner ME.
    Biochemistry; 2008 Nov 04; 47(44):11547-58. PubMed ID: 18837509
    [Abstract] [Full Text] [Related]

  • 13. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis.
    Manuel SG, Ragunath C, Sait HB, Izano EA, Kaplan JB, Ramasubbu N.
    FEBS J; 2007 Nov 04; 274(22):5987-99. PubMed ID: 17949435
    [Abstract] [Full Text] [Related]

  • 14. Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases.
    Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, Kelly RM.
    Biochemistry; 2007 Mar 20; 46(11):3319-30. PubMed ID: 17323919
    [Abstract] [Full Text] [Related]

  • 15. Catalytic mechanism of inulinase from Arthrobacter sp. S37.
    Kim KY, Nascimento AS, Golubev AM, Polikarpov I, Kim CS, Kang SI, Kim SI.
    Biochem Biophys Res Commun; 2008 Jul 11; 371(4):600-5. PubMed ID: 18395004
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. A Novel Glycoside Hydrolase Family 113 Endo-β-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family.
    Xia W, Lu H, Xia M, Cui Y, Bai Y, Qian L, Shi P, Luo H, Yao B.
    Appl Environ Microbiol; 2016 May 11; 82(9):2718-2727. PubMed ID: 26921423
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 47.