These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 8976561
1. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN. Protein Sci; 1996 Dec; 5(12):2521-31. PubMed ID: 8976561 [Abstract] [Full Text] [Related]
2. Assembly and dissociation of human insulin and LysB28ProB29-insulin hexamers: a comparison study. Birnbaum DT, Kilcomons MA, DeFelippis MR, Beals JM. Pharm Res; 1997 Jan; 14(1):25-36. PubMed ID: 9034217 [Abstract] [Full Text] [Related]
3. Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Ciszak E, Beals JM, Frank BH, Baker JC, Carter ND, Smith GD. Structure; 1995 Jun 15; 3(6):615-22. PubMed ID: 8590022 [Abstract] [Full Text] [Related]
4. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. Rahuel-Clermont S, French CA, Kaarsholm NC, Dunn MF, Chou CI. Biochemistry; 1997 May 13; 36(19):5837-45. PubMed ID: 9153424 [Abstract] [Full Text] [Related]
5. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers. Birnbaum DT, Dodd SW, Saxberg BE, Varshavsky AD, Beals JM. Biochemistry; 1996 Apr 30; 35(17):5366-78. PubMed ID: 8611526 [Abstract] [Full Text] [Related]
6. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review. Dunn MF. Biometals; 2005 Aug 30; 18(4):295-303. PubMed ID: 16158220 [Abstract] [Full Text] [Related]
7. Rapid-Acting and Human Insulins: Hexamer Dissociation Kinetics upon Dilution of the Pharmaceutical Formulation. Gast K, Schüler A, Wolff M, Thalhammer A, Berchtold H, Nagel N, Lenherr G, Hauck G, Seckler R. Pharm Res; 2017 Nov 30; 34(11):2270-2286. PubMed ID: 28762200 [Abstract] [Full Text] [Related]
8. Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro --> Asp insulin analogues. Whittingham JL, Edwards DJ, Antson AA, Clarkson JM, Dodson GG. Biochemistry; 1998 Aug 18; 37(33):11516-23. PubMed ID: 9708987 [Abstract] [Full Text] [Related]
9. The allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions. Choi WE, Brader ML, Aguilar V, Kaarsholm NC, Dunn MF. Biochemistry; 1993 Nov 02; 32(43):11638-45. PubMed ID: 8218231 [Abstract] [Full Text] [Related]
10. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer. Huus K, Havelund S, Olsen HB, Sigurskjold BW, van de Weert M, Frokjaer S. Biochemistry; 2006 Mar 28; 45(12):4014-24. PubMed ID: 16548529 [Abstract] [Full Text] [Related]
11. Role of metal ions in the T- to R-allosteric transition in the insulin hexamer. Kadima W. Biochemistry; 1999 Oct 12; 38(41):13443-52. PubMed ID: 10521251 [Abstract] [Full Text] [Related]
12. Differences in the cellular processing of AspB10 human insulin compared with human insulin and LysB28ProB29 human insulin. Hamel FG, Siford GL, Fawcett J, Chance RE, Frank BH, Duckworth WC. Metabolism; 1999 May 12; 48(5):611-7. PubMed ID: 10337862 [Abstract] [Full Text] [Related]
13. Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Steensgaard DB, Schluckebier G, Strauss HM, Norrman M, Thomsen JK, Friderichsen AV, Havelund S, Jonassen I. Biochemistry; 2013 Jan 15; 52(2):295-309. PubMed ID: 23256685 [Abstract] [Full Text] [Related]
14. Binding of phenol to R6 insulin hexamers. Berchtold H, Hilgenfeld R. Biopolymers; 1999 Jan 15; 51(2):165-72. PubMed ID: 10397800 [Abstract] [Full Text] [Related]
15. [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. Diabetes; 1994 Mar 15; 43(3):396-402. PubMed ID: 8314011 [Abstract] [Full Text] [Related]
16. Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure. Yip CM, Brader ML, DeFelippis MR, Ward MD. Biophys J; 1998 May 15; 74(5):2199-209. PubMed ID: 9591647 [Abstract] [Full Text] [Related]
17. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. II. Experimental application for insulin and LysPro insulin: aggregation morphology, kinetics, and sizes of nuclei. Selivanova OM, Suvorina MY, Dovidchenko NV, Eliseeva IA, Surin AK, Finkelstein AV, Schmatchenko VV, Galzitskaya OV. J Phys Chem B; 2014 Feb 06; 118(5):1198-206. PubMed ID: 24428561 [Abstract] [Full Text] [Related]
18. X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Whittingham JL, Chaudhuri S, Dodson EJ, Moody PC, Dodson GG. Biochemistry; 1995 Nov 28; 34(47):15553-63. PubMed ID: 7492558 [Abstract] [Full Text] [Related]
19. Solution structures of the R6 human insulin hexamer, Chang X, Jorgensen AM, Bardrum P, Led JJ. Biochemistry; 1997 Aug 05; 36(31):9409-22. PubMed ID: 9235985 [Abstract] [Full Text] [Related]
20. Characterization of the R-state insulin hexamer and its derivatives. The hexamer is stabilized by heterotropic ligand binding interactions. Brader ML, Kaarsholm NC, Lee RW, Dunn MF. Biochemistry; 1991 Jul 09; 30(27):6636-45. PubMed ID: 2065051 [Abstract] [Full Text] [Related] Page: [Next] [New Search]