These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 8985883

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Characteristics of the travelling wave in the low-frequency region of a temporal-bone preparation of the guinea-pig cochlea.
    Hemmert W, Zenner H, Gummer AW.
    Hear Res; 2000 Apr; 142(1-2):184-202. PubMed ID: 10748338
    [Abstract] [Full Text] [Related]

  • 8. An experimental study into the acousto-mechanical effects of invading the cochlea.
    Dong W, Cooper NP.
    J R Soc Interface; 2006 Aug 22; 3(9):561-71. PubMed ID: 16849252
    [Abstract] [Full Text] [Related]

  • 9. The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry.
    Ulfendahl M, Khanna SM, Flock A.
    Neuroscience; 1996 May 22; 72(1):199-212. PubMed ID: 8730717
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry.
    Ulfendahl M, Khanna SM, Heneghan C.
    Neuroreport; 1995 May 30; 6(8):1157-60. PubMed ID: 7662897
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Reticular lamina vibrations in the apical turn of a living guinea pig cochlea.
    Khanna SM, Hao LF.
    Hear Res; 1999 Jun 30; 132(1-2):15-33. PubMed ID: 10392544
    [Abstract] [Full Text] [Related]

  • 14. Mechanical nonlinearity in the apical turn of the guinea pig organ of Corti.
    Hao LF, Khanna SM.
    Hear Res; 2000 Oct 30; 148(1-2):31-46. PubMed ID: 10978823
    [Abstract] [Full Text] [Related]

  • 15. Mechanical preprocessing of amplitude-modulated sounds in the apex of the cochlea.
    Cooper NP.
    ORL J Otorhinolaryngol Relat Spec; 2006 Oct 30; 68(6):353-8. PubMed ID: 17065829
    [Abstract] [Full Text] [Related]

  • 16. Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation.
    Ulfendahl M, Khanna SM, Löfstrand P.
    Eur J Neurosci; 1993 Jun 01; 5(6):713-23. PubMed ID: 8261142
    [Abstract] [Full Text] [Related]

  • 17. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T, He W, Kemp D.
    Proc Natl Acad Sci U S A; 2016 Aug 30; 113(35):9910-5. PubMed ID: 27516544
    [Abstract] [Full Text] [Related]

  • 18. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea.
    Cooper NP, Rhode WS.
    J Neurophysiol; 1997 Jul 30; 78(1):261-70. PubMed ID: 9242278
    [Abstract] [Full Text] [Related]

  • 19. Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization.
    Russell IJ, Kössl M.
    Proc Biol Sci; 1992 Feb 22; 247(1319):97-105. PubMed ID: 1349187
    [Abstract] [Full Text] [Related]

  • 20. Nonlinear mechanics at the apex of the guinea-pig cochlea.
    Cooper NP, Rhode WS.
    Hear Res; 1995 Feb 22; 82(2):225-43. PubMed ID: 7775288
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.