These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 8986832

  • 1. Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation.
    Nayak AS, Moore CI, Browning MD.
    Proc Natl Acad Sci U S A; 1996 Dec 24; 93(26):15451-6. PubMed ID: 8986832
    [Abstract] [Full Text] [Related]

  • 2. Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation.
    Fukunaga K, Muller D, Miyamoto E.
    J Biol Chem; 1995 Mar 17; 270(11):6119-24. PubMed ID: 7890745
    [Abstract] [Full Text] [Related]

  • 3. CaM kinase II in long-term potentiation.
    Fukunaga K, Muller D, Miyamoto E.
    Neurochem Int; 1996 Apr 17; 28(4):343-58. PubMed ID: 8740440
    [Abstract] [Full Text] [Related]

  • 4. Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation.
    Liu J, Fukunaga K, Yamamoto H, Nishi K, Miyamoto E.
    J Neurosci; 1999 Oct 01; 19(19):8292-9. PubMed ID: 10493730
    [Abstract] [Full Text] [Related]

  • 5. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms.
    Wang JH, Kelly PT.
    J Neurophysiol; 1997 Nov 01; 78(5):2707-16. PubMed ID: 9356420
    [Abstract] [Full Text] [Related]

  • 6. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin.
    Fukunaga K, Horikawa K, Shibata S, Takeuchi Y, Miyamoto E.
    J Neurosci Res; 2002 Dec 15; 70(6):799-807. PubMed ID: 12444602
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Transient removal of extracellular Mg(2+) elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation.
    Hsu KS, Ho WC, Huang CC, Tsai JJ.
    J Neurophysiol; 2000 Sep 15; 84(3):1279-88. PubMed ID: 10980002
    [Abstract] [Full Text] [Related]

  • 9. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M, McIntyre CC, Lisman JE.
    J Neurosci; 2007 May 09; 27(19):5190-9. PubMed ID: 17494705
    [Abstract] [Full Text] [Related]

  • 10. Long-term treatment with S-adenosylmethionine induces changes in presynaptic CaM kinase II and synapsin I.
    Consogno E, Tiraboschi E, Iuliano E, Gennarelli M, Racagni G, Popoli M.
    Biol Psychiatry; 2001 Sep 01; 50(5):337-44. PubMed ID: 11543736
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.
    Oomura Y, Hori N, Shiraishi T, Fukunaga K, Takeda H, Tsuji M, Matsumiya T, Ishibashi M, Aou S, Li XL, Kohno D, Uramura K, Sougawa H, Yada T, Wayner MJ, Sasaki K.
    Peptides; 2006 Nov 01; 27(11):2738-49. PubMed ID: 16914228
    [Abstract] [Full Text] [Related]

  • 13. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S.
    Eur J Neurosci; 2004 Jul 01; 20(1):101-10. PubMed ID: 15245483
    [Abstract] [Full Text] [Related]

  • 14. Activators of protein kinase C increase the phosphorylation of the synapsins at sites phosphorylated by cAMP-dependent and Ca2+/calmodulin-dependent protein kinase in the rat hippocampal slice.
    Browning MD, Dudek EM.
    Synapse; 1992 Jan 01; 10(1):62-70. PubMed ID: 1311130
    [Abstract] [Full Text] [Related]

  • 15. Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons.
    Wang JH, Kelly PT.
    J Neurophysiol; 1996 Jul 01; 76(1):276-86. PubMed ID: 8836224
    [Abstract] [Full Text] [Related]

  • 16. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse.
    Llinás R, Gruner JA, Sugimori M, McGuinness TL, Greengard P.
    J Physiol; 1991 May 01; 436():257-82. PubMed ID: 1676419
    [Abstract] [Full Text] [Related]

  • 17. Isoproterenol increases the phosphorylation of the synapsins and increases synaptic transmission in dentate gyrus, but not in area CA1, of the hippocampus.
    Parfitt KD, Doze VA, Madison DV, Browning MD.
    Hippocampus; 1992 Jan 01; 2(1):59-64. PubMed ID: 1339193
    [Abstract] [Full Text] [Related]

  • 18. Calcium/calmodulin-dependent protein kinase II regulates hippocampal synaptic transmission.
    Waxham MN, Malenka RC, Kelly PT, Mauk MD.
    Brain Res; 1993 Apr 23; 609(1-2):1-8. PubMed ID: 8389645
    [Abstract] [Full Text] [Related]

  • 19. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.
    Makhinson M, Chotiner JK, Watson JB, O'Dell TJ.
    J Neurosci; 1999 Apr 01; 19(7):2500-10. PubMed ID: 10087064
    [Abstract] [Full Text] [Related]

  • 20. Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression.
    Stanton PK, Gage AT.
    J Neurophysiol; 1996 Sep 01; 76(3):2097-101. PubMed ID: 8890320
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.