These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


272 related items for PubMed ID: 9003195

  • 1. Outer leaflet-packing defects promote poly(ethylene glycol)-mediated fusion of large unilamellar vesicles.
    Lee J, Lentz BR.
    Biochemistry; 1997 Jan 14; 36(2):421-31. PubMed ID: 9003195
    [Abstract] [Full Text] [Related]

  • 2. A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles.
    Wu H, Zheng L, Lentz BR.
    Biochemistry; 1996 Sep 24; 35(38):12602-11. PubMed ID: 8823198
    [Abstract] [Full Text] [Related]

  • 3. Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion.
    Talbot WA, Zheng LX, Lentz BR.
    Biochemistry; 1997 May 13; 36(19):5827-36. PubMed ID: 9153423
    [Abstract] [Full Text] [Related]

  • 4. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer.
    Haque ME, McIntosh TJ, Lentz BR.
    Biochemistry; 2001 Apr 10; 40(14):4340-8. PubMed ID: 11284690
    [Abstract] [Full Text] [Related]

  • 5. Effects of hemagglutinin fusion peptide on poly(ethylene glycol)-mediated fusion of phosphatidylcholine vesicles.
    Haque ME, McCoy AJ, Glenn J, Lee J, Lentz BR.
    Biochemistry; 2001 Nov 27; 40(47):14243-51. PubMed ID: 11714278
    [Abstract] [Full Text] [Related]

  • 6. Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion.
    Lentz BR, Talbot W, Lee J, Zheng LX.
    Biochemistry; 1997 Feb 25; 36(8):2076-83. PubMed ID: 9047306
    [Abstract] [Full Text] [Related]

  • 7. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion.
    Lee J, Lentz BR.
    Biochemistry; 1997 May 27; 36(21):6251-9. PubMed ID: 9174340
    [Abstract] [Full Text] [Related]

  • 8. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A, Killian JA, Verkleij AJ, Wilschut J.
    Biophys J; 1999 Oct 27; 77(4):2003-14. PubMed ID: 10512820
    [Abstract] [Full Text] [Related]

  • 9. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles.
    Lentz BR, McIntyre GF, Parks DJ, Yates JC, Massenburg D.
    Biochemistry; 1992 Mar 17; 31(10):2643-53. PubMed ID: 1547207
    [Abstract] [Full Text] [Related]

  • 10. Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing.
    Parente RA, Lentz BR.
    Biochemistry; 1986 Oct 21; 25(21):6678-88. PubMed ID: 3790550
    [Abstract] [Full Text] [Related]

  • 11. Kinetics of lipid rearrangements during poly(ethylene glycol)-mediated fusion of highly curved unilamellar vesicles.
    Evans KO, Lentz BR.
    Biochemistry; 2002 Jan 29; 41(4):1241-9. PubMed ID: 11802723
    [Abstract] [Full Text] [Related]

  • 12. Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles.
    Massenburg D, Lentz BR.
    Biochemistry; 1993 Sep 07; 32(35):9172-80. PubMed ID: 7690251
    [Abstract] [Full Text] [Related]

  • 13. The interfacial region of dipalmitoylphosphatidylcholine bilayers is perturbed by fusogenic amphipaths.
    Lentz BR, Wu JR, Zheng L, Prevrátil J.
    Biophys J; 1996 Dec 07; 71(6):3302-10. PubMed ID: 8968599
    [Abstract] [Full Text] [Related]

  • 14. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release?
    Lentz BR, Lee JK.
    Mol Membr Biol; 1999 Dec 07; 16(4):279-96. PubMed ID: 10766128
    [Abstract] [Full Text] [Related]

  • 15. Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles.
    Elmer-Dixon MM, Hoody J, Steele HBB, Becht DC, Bowler BE.
    J Phys Chem B; 2019 Oct 31; 123(43):9111-9122. PubMed ID: 31589821
    [Abstract] [Full Text] [Related]

  • 16. Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion.
    Yang Q, Guo Y, Li L, Hui SW.
    Biophys J; 1997 Jul 31; 73(1):277-82. PubMed ID: 9199792
    [Abstract] [Full Text] [Related]

  • 17. Activation of phospholipase A2 on lipid bilayers.
    Bell JD, Biltonen RL.
    Methods Enzymol; 1991 Jul 31; 197():249-58. PubMed ID: 2051919
    [Abstract] [Full Text] [Related]

  • 18. Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: correlation between vesicle aggregation, bilayer destabilization, and fusion.
    Wilschut J, Nir S, Scholma J, Hoekstra D.
    Biochemistry; 1985 Aug 13; 24(17):4630-6. PubMed ID: 4063345
    [Abstract] [Full Text] [Related]

  • 19. The use of C6-NBD-PC for assaying phospholipase A2-activity: scope and limitations.
    Meyuhas D, Yedgar S, Rotenberg M, Reisfeld N, Lichtenberg D.
    Biochim Biophys Acta; 1992 Mar 25; 1124(3):223-32. PubMed ID: 1576162
    [Abstract] [Full Text] [Related]

  • 20. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers.
    Kamp F, Hamilton JA, Kamp F, Westerhoff HV, Hamilton JA.
    Biochemistry; 1993 Oct 19; 32(41):11074-86. PubMed ID: 8218171
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.