These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 9007188

  • 1. Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone-specific monoclonal antibody.
    Wikler KC, Rakic P, Bhattacharyya N, Macleish PR.
    J Comp Neurol; 1997 Jan 27; 377(4):500-8. PubMed ID: 9007188
    [Abstract] [Full Text] [Related]

  • 2. Spatial and temporal expression of cone opsins during monkey retinal development.
    Bumsted K, Jasoni C, Szél A, Hendrickson A.
    J Comp Neurol; 1997 Feb 03; 378(1):117-34. PubMed ID: 9120051
    [Abstract] [Full Text] [Related]

  • 3. Cone properties of retinal margin cells in the monkey (Macaca mulatta).
    Chen X, Wikler KC, MacLeish PR.
    Invest Ophthalmol Vis Sci; 2000 Jul 03; 41(8):2019-22. PubMed ID: 10892837
    [Abstract] [Full Text] [Related]

  • 4. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y.
    Mol Vis; 2003 Feb 15; 9():31-42. PubMed ID: 12592228
    [Abstract] [Full Text] [Related]

  • 5. The role of opsin expression and apoptosis in determination of cone types in human retina.
    Cornish EE, Xiao M, Yang Z, Provis JM, Hendrickson AE.
    Exp Eye Res; 2004 Jun 15; 78(6):1143-54. PubMed ID: 15109921
    [Abstract] [Full Text] [Related]

  • 6. Relation of an array of early-differentiating cones to the photoreceptor mosaic in the primate retina.
    Wikler KC, Rakic P.
    Nature; 1991 May 30; 351(6325):397-400. PubMed ID: 1827876
    [Abstract] [Full Text] [Related]

  • 7. An array of early differentiating cones precedes the emergence of the photoreceptor mosaic in the fetal monkey retina.
    Wikler KC, Rakic P.
    Proc Natl Acad Sci U S A; 1994 Jul 05; 91(14):6534-8. PubMed ID: 7912829
    [Abstract] [Full Text] [Related]

  • 8. Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones.
    Xiao M, Hendrickson A.
    J Comp Neurol; 2000 Oct 02; 425(4):545-59. PubMed ID: 10975879
    [Abstract] [Full Text] [Related]

  • 9. Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic.
    Stenkamp DL, Hisatomi O, Barthel LK, Tokunaga F, Raymond PA.
    Invest Ophthalmol Vis Sci; 1996 Feb 02; 37(2):363-76. PubMed ID: 8603841
    [Abstract] [Full Text] [Related]

  • 10. Immunocytochemical analysis of bipolar cells in the macaque monkey retina.
    Grünert U, Martin PR, Wässle H.
    J Comp Neurol; 1994 Oct 22; 348(4):607-27. PubMed ID: 7530731
    [Abstract] [Full Text] [Related]

  • 11. Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea.
    Bumsted K, Hendrickson A.
    J Comp Neurol; 1999 Jan 25; 403(4):502-16. PubMed ID: 9888315
    [Abstract] [Full Text] [Related]

  • 12. Development of photoreceptor mosaics in the primate retina.
    Wikler KC, Rakic P.
    Perspect Dev Neurobiol; 1996 Jan 25; 3(3):161-75. PubMed ID: 8931091
    [Abstract] [Full Text] [Related]

  • 13. Migration and synaptogenesis of cone photoreceptors in the developing mouse retina.
    Rich KA, Zhan Y, Blanks JC.
    J Comp Neurol; 1997 Nov 10; 388(1):47-63. PubMed ID: 9364238
    [Abstract] [Full Text] [Related]

  • 14. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L, Pulukuri S, Mears AJ, Swaroop A, Reese BE, Sitaramayya A.
    Mol Vis; 2004 May 11; 10():323-7. PubMed ID: 15152186
    [Abstract] [Full Text] [Related]

  • 15. Presence and foveal enrichment of rod opsin in the "all cone" retina of the American chameleon.
    McDevitt DS, Brahma SK, Jeanny JC, Hicks D.
    Anat Rec; 1993 Nov 11; 237(3):299-307. PubMed ID: 8291682
    [Abstract] [Full Text] [Related]

  • 16. Localization of iodopsin in the chick retina during in vivo and in vitro cone differentiation.
    Araki M, Fukada Y, Shichida Y, Yoshizawa T.
    Invest Ophthalmol Vis Sci; 1990 Aug 11; 31(8):1466-73. PubMed ID: 2201661
    [Abstract] [Full Text] [Related]

  • 17. Primate rod and cone photoreceptors may differ in glucose accessibility.
    Nihira M, Anderson K, Gorin FA, Burns MS.
    Invest Ophthalmol Vis Sci; 1995 Jun 11; 36(7):1259-70. PubMed ID: 7775103
    [Abstract] [Full Text] [Related]

  • 18. Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment.
    Rex TS, Lewis GP, Geller SF, Fisher SK.
    Mol Vis; 2002 Apr 16; 8():114-8. PubMed ID: 11979236
    [Abstract] [Full Text] [Related]

  • 19. Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles.
    Cornish EE, Hendrickson AE, Provis JM.
    Vision Res; 2004 Apr 16; 44(17):2019-26. PubMed ID: 15149835
    [Abstract] [Full Text] [Related]

  • 20. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG, Timmers AM, Issa TM, Cortez NG, Pang J, Teusner JT, Hauswirth WW.
    Mol Vis; 2006 Apr 07; 12():298-309. PubMed ID: 16617297
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.