These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Auditory nerve and brain stem responses to sound stimuli at various frequencies. Brama I, Sohmer H. Audiology; 1977; 16(5):402-8. PubMed ID: 901294 [Abstract] [Full Text] [Related]
6. [Origin of N1 wave of the cochlear nerve action potential recorded at the bony wall of the cochlea]. Matsushima J. Hokkaido Igaku Zasshi; 1982 Sep; 57(5):602-13. PubMed ID: 7152466 [Abstract] [Full Text] [Related]
7. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts. Shore SE, Nuttall AL. J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500 [Abstract] [Full Text] [Related]
8. Fast Click Rate Electrocochleography and Auditory Brainstem Response in Normal-Hearing Adults Using Continuous Loop Averaging Deconvolution. Kaf WA, Lewis KM, Yavuz E, Dixon SM, Van Ess M, Jamos AM, Delgado RE. Ear Hear; 2017 Oct; 38(2):244-254. PubMed ID: 27861251 [Abstract] [Full Text] [Related]
9. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. Jovanovic S, Radulovic T, Coddou C, Dietz B, Nerlich J, Stojilkovic SS, Rübsamen R, Milenkovic I. J Physiol; 2017 Feb 15; 595(4):1315-1337. PubMed ID: 28030754 [Abstract] [Full Text] [Related]
10. Rhythmic discharge properties of caudal cochlear nucleus neurons during postnatal development in cats. Walsh EJ, McGee J. Hear Res; 1988 Nov 15; 36(2-3):233-47. PubMed ID: 2905360 [Abstract] [Full Text] [Related]
11. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. Crawford AC, Fettiplace R. J Physiol; 1980 Sep 15; 306():79-125. PubMed ID: 7463380 [Abstract] [Full Text] [Related]
13. Correspondence between sharp tuning and two-tone inhibition in primary auditory neurones. Robertson D. Nature; 1976 Feb 12; 259(5543):477-8. PubMed ID: 1256545 [No Abstract] [Full Text] [Related]
14. Survey of intracellular recording in the cochlear nucleus of the cat. Romand R. Brain Res; 1978 Jun 09; 148(1):43-65. PubMed ID: 656932 [Abstract] [Full Text] [Related]
15. The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans(1). Rupp A, Uppenkamp S, Gutschalk A, Beucker R, Patterson RD, Dau T, Scherg M. Hear Res; 2002 Dec 09; 174(1-2):19-31. PubMed ID: 12433393 [Abstract] [Full Text] [Related]
17. Compound action potential offset and onset tuning curves generated by simultaneous masking in the mongolian gerbil. Effects of varying the intensity of the probe stimulus from 55 to 85 dB SPL. Henry KR. Hear Res; 1987 May 08; 30(1):49-54. PubMed ID: 3680053 [Abstract] [Full Text] [Related]
18. Auditory influences via cochlear nucleus on cuneate neurons in decerebrate-decerebellate cats. Saadé NE, Bassim YR, Atweh SF, Jabbur SJ. Brain Res; 1989 May 08; 486(2):403-6. PubMed ID: 2731043 [Abstract] [Full Text] [Related]
19. Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. Young ED, Robert JM, Shofner WP. J Neurophysiol; 1988 Jul 08; 60(1):1-29. PubMed ID: 3404211 [Abstract] [Full Text] [Related]
20. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve. Batrel C, Huet A, Hasselmann F, Wang J, Desmadryl G, Nouvian R, Puel JL, Bourien J. PLoS One; 2017 Jul 08; 12(1):e0169890. PubMed ID: 28085968 [Abstract] [Full Text] [Related] Page: [Next] [New Search]