These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 9029735

  • 1. The roles of calmodulin, actin, and vimentin in steroid synthesis by adrenal cells.
    Hall PF.
    Steroids; 1997 Jan; 62(1):185-9. PubMed ID: 9029735
    [Abstract] [Full Text] [Related]

  • 2. The roles of microfilaments and intermediate filaments in the regulation of steroid synthesis.
    Hall PF.
    J Steroid Biochem Mol Biol; 1995 Dec; 55(5-6):601-5. PubMed ID: 8547187
    [Abstract] [Full Text] [Related]

  • 3. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis.
    Hall PF, Almahbobi G.
    Microsc Res Tech; 1997 Mar 15; 36(6):463-79. PubMed ID: 9142693
    [Abstract] [Full Text] [Related]

  • 4. Calcium/calmodulin induces phosphorylation of vimentin and myosin light chain and cell rounding in cultured adrenal cells.
    Almahbobi G, Korn M, Hall PF.
    Eur J Cell Biol; 1994 Apr 15; 63(2):307-15. PubMed ID: 8082655
    [Abstract] [Full Text] [Related]

  • 5. The role of intermediate filaments in adrenal steroidogenesis.
    Almahbobi G, Hall PF.
    J Cell Sci; 1990 Dec 15; 97 ( Pt 4)():679-87. PubMed ID: 2077039
    [Abstract] [Full Text] [Related]

  • 6. Attachment of mitochondria to intermediate filaments in adrenal cells: relevance to the regulation of steroid synthesis.
    Almahbobi G, Williams LJ, Hall PF.
    Exp Cell Res; 1992 Jun 15; 200(2):361-9. PubMed ID: 1315284
    [Abstract] [Full Text] [Related]

  • 7. The role of the cytoskeleton in the regulation of steroidogenesis.
    Hall PF, Almahbobi G.
    J Steroid Biochem Mol Biol; 1992 Dec 15; 43(8):769-77. PubMed ID: 22217823
    [Abstract] [Full Text] [Related]

  • 8. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.
    Jiu Y, Lehtimäki J, Tojkander S, Cheng F, Jäälinoja H, Liu X, Varjosalo M, Eriksson JE, Lappalainen P.
    Cell Rep; 2015 Jun 16; 11(10):1511-8. PubMed ID: 26027931
    [Abstract] [Full Text] [Related]

  • 9. Immunofluorescence studies of the cytoskeletal and contractile elements in cultured human trabecular cells.
    Tamura M, Iwamoto Y, Nakatsuka K, Yamanouchi U.
    Jpn J Ophthalmol; 1989 Jun 16; 33(1):95-102. PubMed ID: 2659860
    [Abstract] [Full Text] [Related]

  • 10. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA.
    Jiu Y, Peränen J, Schaible N, Cheng F, Eriksson JE, Krishnan R, Lappalainen P.
    J Cell Sci; 2017 Mar 01; 130(5):892-902. PubMed ID: 28096473
    [Abstract] [Full Text] [Related]

  • 11. An electron microscopic study of the interaction in vitro of vimentin intermediate filaments with vesicles prepared from Ehrlich ascites tumor cell lipids.
    Perides G, Scherbarth A, Kühn S, Traub P.
    Eur J Cell Biol; 1986 Aug 01; 41(2):313-25. PubMed ID: 3758086
    [Abstract] [Full Text] [Related]

  • 12. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.
    Robert A, Herrmann H, Davidson MW, Gelfand VI.
    FASEB J; 2014 Jul 01; 28(7):2879-90. PubMed ID: 24652946
    [Abstract] [Full Text] [Related]

  • 13. Attachment of steroidogenic lipid droplets to intermediate filaments in adrenal cells.
    Almahbobi G, Williams LJ, Hall PF.
    J Cell Sci; 1992 Feb 01; 101 ( Pt 2)():383-93. PubMed ID: 1629251
    [Abstract] [Full Text] [Related]

  • 14. Vimentin and lipid metabolism.
    Schweitzer SC, Evans RM.
    Subcell Biochem; 1998 Feb 01; 31():437-62. PubMed ID: 9932502
    [Abstract] [Full Text] [Related]

  • 15. Intermediate filament collapse is an ATP-dependent and actin-dependent process.
    Hollenbeck PJ, Bershadsky AD, Pletjushkina OY, Tint IS, Vasiliev JM.
    J Cell Sci; 1989 Apr 01; 92 ( Pt 4)():621-31. PubMed ID: 2689463
    [Abstract] [Full Text] [Related]

  • 16. Efficient interaction of nonpolar lipids with intermediate filaments of the vimentin type.
    Traub P, Perides G, Kühn S, Scherbarth A.
    Eur J Cell Biol; 1987 Feb 01; 43(1):55-64. PubMed ID: 3569305
    [Abstract] [Full Text] [Related]

  • 17. Calcium-calmodulin-dependent phosphorylation of cytoskeletal proteins from adrenal cells.
    Papadopoulos V, Brown AS, Hall PF.
    Mol Cell Endocrinol; 1990 Dec 03; 74(2):109-23. PubMed ID: 1965307
    [Abstract] [Full Text] [Related]

  • 18. Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex.
    Wu H, Shen Y, Sivagurunathan S, Weber MS, Adam SA, Shin JH, Fredberg JJ, Medalia O, Goldman R, Weitz DA.
    Proc Natl Acad Sci U S A; 2022 Mar 08; 119(10):e2115217119. PubMed ID: 35235449
    [Abstract] [Full Text] [Related]

  • 19. Distinctive properties of adrenal cortex mitochondria.
    Orme-Johnson NR.
    Biochim Biophys Acta; 1990 Dec 06; 1020(3):213-31. PubMed ID: 2174262
    [Abstract] [Full Text] [Related]

  • 20. Caldesmon is necessary for maintaining the actin and intermediate filaments in cultured bladder smooth muscle cells.
    Deng M, Mohanan S, Polyak E, Chacko S.
    Cell Motil Cytoskeleton; 2007 Dec 06; 64(12):951-65. PubMed ID: 17868135
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.