These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


437 related items for PubMed ID: 9032256

  • 1. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases.
    Wurgler-Murphy SM, Maeda T, Witten EA, Saito H.
    Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256
    [Abstract] [Full Text] [Related]

  • 2. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1.
    Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I.
    J Biol Chem; 1997 Jul 11; 272(28):17749-55. PubMed ID: 9211927
    [Abstract] [Full Text] [Related]

  • 3. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae.
    Zhan XL, Deschenes RJ, Guan KL.
    Genes Dev; 1997 Jul 01; 11(13):1690-702. PubMed ID: 9224718
    [Abstract] [Full Text] [Related]

  • 4. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK.
    Posas F, Saito H.
    Science; 1997 Jun 13; 276(5319):1702-5. PubMed ID: 9180081
    [Abstract] [Full Text] [Related]

  • 5. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3.
    Mattison CP, Spencer SS, Kresge KA, Lee J, Ota IM.
    Mol Cell Biol; 1999 Nov 13; 19(11):7651-60. PubMed ID: 10523653
    [Abstract] [Full Text] [Related]

  • 6. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase.
    Hahn JS, Thiele DJ.
    J Biol Chem; 2002 Jun 14; 277(24):21278-84. PubMed ID: 11923319
    [Abstract] [Full Text] [Related]

  • 7. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast.
    Mattison CP, Ota IM.
    Genes Dev; 2000 May 15; 14(10):1229-35. PubMed ID: 10817757
    [Abstract] [Full Text] [Related]

  • 8. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase.
    Zhan XL, Guan KL.
    Genes Dev; 1999 Nov 01; 13(21):2811-27. PubMed ID: 10557209
    [Abstract] [Full Text] [Related]

  • 9. Two activating phosphorylation sites of Pbs2 MAP2K in the yeast HOG pathway are differentially dephosphorylated by four PP2C phosphatases Ptc1-Ptc4.
    Tatebayashi K, Saito H.
    J Biol Chem; 2023 Apr 01; 299(4):104569. PubMed ID: 36870684
    [Abstract] [Full Text] [Related]

  • 10. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1.
    Warmka J, Hanneman J, Lee J, Amin D, Ota I.
    Mol Cell Biol; 2001 Jan 01; 21(1):51-60. PubMed ID: 11113180
    [Abstract] [Full Text] [Related]

  • 11. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.
    Iwaki T, Tamai Y, Watanabe Y.
    Microbiology (Reading); 1999 Jan 01; 145 ( Pt 1)():241-248. PubMed ID: 10206704
    [Abstract] [Full Text] [Related]

  • 12. Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase.
    Murakami Y, Tatebayashi K, Saito H.
    Mol Cell Biol; 2008 Apr 01; 28(7):2481-94. PubMed ID: 18212044
    [Abstract] [Full Text] [Related]

  • 13. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.
    Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA.
    J Biol Chem; 2006 Feb 24; 281(8):4638-45. PubMed ID: 16371351
    [Abstract] [Full Text] [Related]

  • 14. Essential functions of protein tyrosine phosphatases PTP2 and PTP3 and RIM11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation.
    Zhan XL, Hong Y, Zhu T, Mitchell AP, Deschenes RJ, Guan KL.
    Mol Biol Cell; 2000 Feb 24; 11(2):663-76. PubMed ID: 10679022
    [Abstract] [Full Text] [Related]

  • 15. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor.
    Maeda T, Takekawa M, Saito H.
    Science; 1995 Jul 28; 269(5223):554-8. PubMed ID: 7624781
    [Abstract] [Full Text] [Related]

  • 16. Rck1 up-regulates Hog1 activity by down-regulating Slt2 activity in Saccharomyces cerevisiae.
    Chang M, Kang HJ, Baek IJ, Kang CM, Park YS, Yun CW.
    Biochem Biophys Res Commun; 2013 Oct 11; 440(1):119-24. PubMed ID: 24051094
    [Abstract] [Full Text] [Related]

  • 17. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae.
    Rep M, Albertyn J, Thevelein JM, Prior BA, Hohmann S.
    Microbiology (Reading); 1999 Mar 11; 145 ( Pt 3)():715-727. PubMed ID: 10217506
    [Abstract] [Full Text] [Related]

  • 18. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress.
    Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I.
    Eukaryot Cell; 2002 Apr 11; 1(2):163-73. PubMed ID: 12455951
    [Abstract] [Full Text] [Related]

  • 19. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K.
    Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H.
    EMBO J; 2020 Mar 02; 39(5):e103444. PubMed ID: 32011004
    [Abstract] [Full Text] [Related]

  • 20. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM, Herskowitz I.
    Genes Dev; 1998 Sep 15; 12(18):2874-86. PubMed ID: 9744864
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.