These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


244 related items for PubMed ID: 9045801

  • 1. Regulation of the proteinase B structural gene PRB1 in Saccharomyces cerevisiae.
    Naik RR, Nebes V, Jones EW.
    J Bacteriol; 1997 Mar; 179(5):1469-74. PubMed ID: 9045801
    [Abstract] [Full Text] [Related]

  • 2. Consequences of growth media, gene copy number, and regulatory mutations on the expression of the PRB1 gene of Saccharomyces cerevisiae.
    Moehle CM, Jones EW.
    Genetics; 1990 Jan; 124(1):39-55. PubMed ID: 2407604
    [Abstract] [Full Text] [Related]

  • 3. Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae.
    Shirra MK, Arndt KM.
    Genetics; 1999 May; 152(1):73-87. PubMed ID: 10224244
    [Abstract] [Full Text] [Related]

  • 4. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein.
    Treitel MA, Carlson M.
    Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3132-6. PubMed ID: 7724528
    [Abstract] [Full Text] [Related]

  • 5. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG, Carlson M.
    Genetics; 1994 May 11; 137(1):49-54. PubMed ID: 8056322
    [Abstract] [Full Text] [Related]

  • 6. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O, Vincent O, Gancedo JM.
    Biochem J; 2001 Oct 01; 359(Pt 1):193-201. PubMed ID: 11563983
    [Abstract] [Full Text] [Related]

  • 7. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA, Kuchin S, Carlson M.
    Mol Cell Biol; 1998 Nov 01; 18(11):6273-80. PubMed ID: 9774644
    [Abstract] [Full Text] [Related]

  • 8. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J, Trumbly RJ.
    Yeast; 1998 Aug 01; 14(11):985-1000. PubMed ID: 9730278
    [Abstract] [Full Text] [Related]

  • 9. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
    Xu S, Falvey DA, Brandriss MC.
    Mol Cell Biol; 1995 Apr 01; 15(4):2321-30. PubMed ID: 7891726
    [Abstract] [Full Text] [Related]

  • 10. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D, Proft M, Entian KD.
    Mol Cell Biol; 1995 Apr 01; 15(4):1915-22. PubMed ID: 7891685
    [Abstract] [Full Text] [Related]

  • 11. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms.
    Shashkova S, Wollman AJM, Leake MC, Hohmann S.
    FEMS Microbiol Lett; 2017 Aug 01; 364(14):. PubMed ID: 28854669
    [Abstract] [Full Text] [Related]

  • 12. Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression.
    Dombek KM, Voronkova V, Raney A, Young ET.
    Mol Cell Biol; 1999 Sep 01; 19(9):6029-40. PubMed ID: 10454550
    [Abstract] [Full Text] [Related]

  • 13. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae.
    Vyas VK, Kuchin S, Carlson M.
    Genetics; 2001 Jun 01; 158(2):563-72. PubMed ID: 11404322
    [Abstract] [Full Text] [Related]

  • 14. Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharomyces cerevisiae.
    Kartasheva NN, Kuchin SV, Benevolensky SV.
    Yeast; 1996 Oct 01; 12(13):1297-300. PubMed ID: 8923734
    [Abstract] [Full Text] [Related]

  • 15. Biogenesis of the yeast vacuole (lysosome). Mutation in the active site of the vacuolar serine proteinase yscB abolishes proteolytic maturation of its 73-kDa precursor to the 41.5-kDa pro-enzyme and a newly detected 41-kDa peptide.
    Hirsch HH, Schiffer HH, Müller H, Wolf DH.
    Eur J Biochem; 1992 Feb 01; 203(3):641-53. PubMed ID: 1735447
    [Abstract] [Full Text] [Related]

  • 16. Genome-wide analysis of the functions of a conserved surface on the corepressor Tup1.
    Green SR, Johnson AD.
    Mol Biol Cell; 2005 Jun 01; 16(6):2605-13. PubMed ID: 15788561
    [Abstract] [Full Text] [Related]

  • 17. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS, Tzamarias D.
    J Mol Biol; 2001 Jun 22; 309(5):1007-15. PubMed ID: 11399075
    [Abstract] [Full Text] [Related]

  • 18. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D, Herrero P, de la Cera T, Moreno F.
    J Biol Chem; 2004 Apr 02; 279(14):14440-6. PubMed ID: 14715653
    [Abstract] [Full Text] [Related]

  • 19. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.
    Coffman JA, Cooper TG.
    J Bacteriol; 1997 Sep 02; 179(17):5609-13. PubMed ID: 9287023
    [Abstract] [Full Text] [Related]

  • 20. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae.
    Neigeborn L, Carlson M.
    Genetics; 1984 Dec 02; 108(4):845-58. PubMed ID: 6392017
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.