These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 9047314
1. Manganese(II) active site mutants of 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis strain CM-2. Boldt YR, Whiting AK, Wagner ML, Sadowsky MJ, Que L, Wackett LP. Biochemistry; 1997 Feb 25; 36(8):2147-53. PubMed ID: 9047314 [Abstract] [Full Text] [Related]
2. Manganese(II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Whiting AK, Boldt YR, Hendrich MP, Wackett LP, Que L. Biochemistry; 1996 Jan 09; 35(1):160-70. PubMed ID: 8555170 [Abstract] [Full Text] [Related]
3. 4-nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes. Reynolds MF, Costas M, Ito M, Jo DH, Tipton AA, Whiting AK, Que L. J Biol Inorg Chem; 2003 Feb 09; 8(3):263-72. PubMed ID: 12589562 [Abstract] [Full Text] [Related]
4. A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. Boldt YR, Sadowsky MJ, Ellis LB, Que L, Wackett LP. J Bacteriol; 1995 Mar 09; 177(5):1225-32. PubMed ID: 7868595 [Abstract] [Full Text] [Related]
5. The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study. Emerson JP, Wagner ML, Reynolds MF, Que L, Sadowsky MJ, Wackett LP. J Biol Inorg Chem; 2005 Nov 09; 10(7):751-60. PubMed ID: 16217642 [Abstract] [Full Text] [Related]
6. Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. Wang YZ, Lipscomb JD. Protein Expr Purif; 1997 Jun 09; 10(1):1-9. PubMed ID: 9179284 [Abstract] [Full Text] [Related]
7. In vivo self-hydroxylation of an iron-substituted manganese-dependent extradiol cleaving catechol dioxygenase. Farquhar ER, Emerson JP, Koehntop KD, Reynolds MF, Trmčić M, Que L. J Biol Inorg Chem; 2011 Apr 09; 16(4):589-97. PubMed ID: 21279661 [Abstract] [Full Text] [Related]
8. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K. J Biol Chem; 2003 Jun 13; 278(24):21483-92. PubMed ID: 12672826 [Abstract] [Full Text] [Related]
9. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii. Leitgeb S, Straganz GD, Nidetzky B. Biochem J; 2009 Mar 01; 418(2):403-11. PubMed ID: 18973472 [Abstract] [Full Text] [Related]
10. Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB). Mendel S, Arndt A, Bugg TD. Biochemistry; 2004 Oct 26; 43(42):13390-6. PubMed ID: 15491145 [Abstract] [Full Text] [Related]
11. Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen activation without a change in metal redox state. Emerson JP, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L. Proc Natl Acad Sci U S A; 2008 May 27; 105(21):7347-52. PubMed ID: 18492808 [Abstract] [Full Text] [Related]
12. Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands. Borovok I, Landman O, Kreisberg-Zakarin R, Aharonowitz Y, Cohen G. Biochemistry; 1996 Feb 13; 35(6):1981-7. PubMed ID: 8639682 [Abstract] [Full Text] [Related]
13. Asp537 and Asp812 in bacteriophage T7 RNA polymerase as metal ion-binding sites studied by EPR, flow-dialysis, and transcription. Woody AY, Eaton SS, Osumi-Davis PA, Woody RW. Biochemistry; 1996 Jan 09; 35(1):144-52. PubMed ID: 8555168 [Abstract] [Full Text] [Related]
14. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. Senda T, Sugiyama K, Narita H, Yamamoto T, Kimbara K, Fukuda M, Sato M, Yano K, Mitsui Y. J Mol Biol; 1996 Feb 09; 255(5):735-52. PubMed ID: 8636975 [Abstract] [Full Text] [Related]
15. Pronounced conversion of the metal-specific activity of superoxide dismutase from Porphyromonas gingivalis by the mutation of a single amino acid (Gly155Thr) located apart from the active site. Yamakura F, Sugio S, Hiraoka BY, Ohmori D, Yokota T. Biochemistry; 2003 Sep 16; 42(36):10790-9. PubMed ID: 12962504 [Abstract] [Full Text] [Related]
16. Structure of catechol 2,3-dioxygenase gene encoded in chromosomal DNA of Pseudomonas putida KF715. Lee J, Oh J, Min KR, Kim CK, Min KH, Lee KS, Kim YC, Lim JY, Kim Y. Biochem Biophys Res Commun; 1996 Jul 25; 224(3):831-6. PubMed ID: 8713131 [Abstract] [Full Text] [Related]
17. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases. Straganz GD, Nidetzky B. Chembiochem; 2006 Oct 25; 7(10):1536-48. PubMed ID: 16858718 [Abstract] [Full Text] [Related]
18. Structure of catechol 2,3-dioxygenase gene from Alcaligenes eutrophus 335. Kang BS, Ha JY, Lim JC, Lee J, Kim CK, Min KR, Kim Y. Biochem Biophys Res Commun; 1998 Apr 28; 245(3):791-6. PubMed ID: 9588193 [Abstract] [Full Text] [Related]