These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


2809 related items for PubMed ID: 9054569

  • 1. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ, Jeng MF, Tennant LL, Slaby I, Lindell M, Cui DS, Kuprin S, Holmgren A.
    Biochemistry; 1997 Mar 04; 36(9):2622-36. PubMed ID: 9054569
    [Abstract] [Full Text] [Related]

  • 2. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin.
    Takahashi N, Creighton TE.
    Biochemistry; 1996 Jun 25; 35(25):8342-53. PubMed ID: 8679592
    [Abstract] [Full Text] [Related]

  • 3. Direct measurement of the aspartic acid 26 pKa for reduced Escherichia coli thioredoxin by 13C NMR.
    Jeng MF, Dyson HJ.
    Biochemistry; 1996 Jan 09; 35(1):1-6. PubMed ID: 8555161
    [Abstract] [Full Text] [Related]

  • 4. Conformation, stability, and active-site cysteine titrations of Escherichia coli D26A thioredoxin probed by Raman spectroscopy.
    Vohník S, Hanson C, Tuma R, Fuchs JA, Woodward C, Thomas GJ.
    Protein Sci; 1998 Jan 09; 7(1):193-200. PubMed ID: 9514274
    [Abstract] [Full Text] [Related]

  • 5. Ionization equilibria for side-chain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF kappa B.
    Qin J, Clore GM, Gronenborn AM.
    Biochemistry; 1996 Jan 09; 35(1):7-13. PubMed ID: 8555200
    [Abstract] [Full Text] [Related]

  • 6. Effect of pH on the oxidation-reduction properties of thioredoxins.
    Setterdahl AT, Chivers PT, Hirasawa M, Lemaire SD, Keryer E, Miginiac-Maslow M, Kim SK, Mason J, Jacquot JP, Longbine CC, de Lamotte-Guery F, Knaff DB.
    Biochemistry; 2003 Dec 23; 42(50):14877-84. PubMed ID: 14674763
    [Abstract] [Full Text] [Related]

  • 7. A positive charge at position 33 of thioredoxin primarily affects its interaction with other proteins but not redox potential.
    Lin TY, Chen TS.
    Biochemistry; 2004 Feb 03; 43(4):945-52. PubMed ID: 14744138
    [Abstract] [Full Text] [Related]

  • 8. Structural determinants of the catalytic reactivity of the buried cysteine of Escherichia coli thioredoxin.
    LeMaster DM.
    Biochemistry; 1996 Nov 26; 35(47):14876-81. PubMed ID: 8942651
    [Abstract] [Full Text] [Related]

  • 9. Microscopic pKa values of Escherichia coli thioredoxin.
    Chivers PT, Prehoda KE, Volkman BF, Kim BM, Markley JL, Raines RT.
    Biochemistry; 1997 Dec 02; 36(48):14985-91. PubMed ID: 9398223
    [Abstract] [Full Text] [Related]

  • 10. General acid/base catalysis in the active site of Escherichia coli thioredoxin.
    Chivers PT, Raines RT.
    Biochemistry; 1997 Dec 16; 36(50):15810-6. PubMed ID: 9398311
    [Abstract] [Full Text] [Related]

  • 11. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family.
    Kortemme T, Creighton TE.
    J Mol Biol; 1995 Nov 10; 253(5):799-812. PubMed ID: 7473753
    [Abstract] [Full Text] [Related]

  • 12. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N, Sagemark J, Nordstrand K, Berndt KD, Nilsson L.
    J Mol Biol; 2001 Jul 06; 310(2):449-70. PubMed ID: 11428900
    [Abstract] [Full Text] [Related]

  • 13. The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin.
    Roos G, Garcia-Pino A, Van Belle K, Brosens E, Wahni K, Vandenbussche G, Wyns L, Loris R, Messens J.
    J Mol Biol; 2007 May 04; 368(3):800-11. PubMed ID: 17368484
    [Abstract] [Full Text] [Related]

  • 14. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues.
    Carvalho AT, Swart M, van Stralen JN, Fernandes PA, Ramos MJ, Bickelhaupt FM.
    J Phys Chem B; 2008 Feb 28; 112(8):2511-23. PubMed ID: 18237164
    [Abstract] [Full Text] [Related]

  • 15. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT, Fernandes PA, Ramos MJ.
    J Comput Chem; 2006 Jun 28; 27(8):966-75. PubMed ID: 16586531
    [Abstract] [Full Text] [Related]

  • 16. The conserved, buried aspartic acid in oxidized Escherichia coli thioredoxin has a pKa of 7.5. Its titration produces a related shift in global stability.
    Langsetmo K, Fuchs JA, Woodward C.
    Biochemistry; 1991 Jul 30; 30(30):7603-9. PubMed ID: 1854757
    [Abstract] [Full Text] [Related]

  • 17. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E, Huber-Wunderlich M, Glockshuber R.
    Protein Sci; 1998 May 30; 7(5):1233-44. PubMed ID: 9605329
    [Abstract] [Full Text] [Related]

  • 18. Mutation of conserved residues in Escherichia coli thioredoxin: effects on stability and function.
    Gleason FK.
    Protein Sci; 1992 May 30; 1(5):609-16. PubMed ID: 1304360
    [Abstract] [Full Text] [Related]

  • 19. Replacement of Trp28 in Escherichia coli thioredoxin by site-directed mutagenesis affects thermodynamic stability but not function.
    Slaby I, Cerna V, Jeng MF, Dyson HJ, Holmgren A.
    J Biol Chem; 1996 Feb 09; 271(6):3091-6. PubMed ID: 8621706
    [Abstract] [Full Text] [Related]

  • 20. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG.
    Proc Natl Acad Sci U S A; 2000 Mar 14; 97(6):2521-6. PubMed ID: 10688911
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 141.