These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 9056191
1. Recombinant strategies for rapid purification of catalytic subunits of cAMP-dependent protein kinase. Hemmer W, McGlone M, Taylor SS. Anal Biochem; 1997 Feb 15; 245(2):115-22. PubMed ID: 9056191 [Abstract] [Full Text] [Related]
2. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Herberg FW, Taylor SS, Dostmann WR. Biochemistry; 1996 Mar 05; 35(9):2934-42. PubMed ID: 8608131 [Abstract] [Full Text] [Related]
3. Second-site mutations in cyclic AMP-sensitive revertants of a Ka mutant of S49 mouse lymphoma cells reduce the affinity of regulatory subunit of cyclic AMP-dependent protein kinase for catalytic subunit. Cauthron RD, Gorman KB, Symcox MM, Steinberg RA. J Cell Physiol; 1995 Nov 05; 165(2):376-85. PubMed ID: 7593216 [Abstract] [Full Text] [Related]
4. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting. Yu S, Mei FC, Lee JC, Cheng X. Biochemistry; 2004 Feb 24; 43(7):1908-20. PubMed ID: 14967031 [Abstract] [Full Text] [Related]
5. Type II beta regulatory subunit of cAMP-dependent protein kinase: purification strategies to optimize crystallization. Diller TC, Xuong NH, Taylor SS. Protein Expr Purif; 2000 Dec 24; 20(3):357-64. PubMed ID: 11087674 [Abstract] [Full Text] [Related]
6. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase. Iyer GH, Garrod S, Woods VL, Taylor SS. J Mol Biol; 2005 Sep 02; 351(5):1110-22. PubMed ID: 16054648 [Abstract] [Full Text] [Related]
7. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Herberg FW, Zimmermann B, McGlone M, Taylor SS. Protein Sci; 1997 Mar 02; 6(3):569-79. PubMed ID: 9070439 [Abstract] [Full Text] [Related]
8. Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS). Hamuro Y, Anand GS, Kim JS, Juliano C, Stranz DD, Taylor SS, Woods VL. J Mol Biol; 2004 Jul 23; 340(5):1185-96. PubMed ID: 15236976 [Abstract] [Full Text] [Related]
9. Human regulatory subunit RI beta of cAMP-dependent protein kinases: expression, holoenzyme formation and microinjection into living cells. Solberg R, Taskén K, Wen W, Coghlan VM, Meinkoth JL, Scott JD, Jahnsen T, Taylor SS. Exp Cell Res; 1994 Oct 23; 214(2):595-605. PubMed ID: 7925653 [Abstract] [Full Text] [Related]
10. Cyclic-AMP and pseudosubstrate effects on type-I A-kinase regulatory and catalytic subunit binding kinetics. Anand G, Taylor SS, Johnson DA. Biochemistry; 2007 Aug 14; 46(32):9283-91. PubMed ID: 17658893 [Abstract] [Full Text] [Related]
11. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Prinz A, Diskar M, Erlbruch A, Herberg FW. Cell Signal; 2006 Oct 14; 18(10):1616-25. PubMed ID: 16524697 [Abstract] [Full Text] [Related]
12. Analysis of the dominance of mutations in cAMP-binding sites of murine type I cAMP-dependent protein kinase in activation of kinase from heterozygous mutant lymphoma cells. Shuntoh H, Steinberg RA. J Cell Physiol; 1991 Jan 14; 146(1):86-93. PubMed ID: 1846638 [Abstract] [Full Text] [Related]
13. Functional changes in the regulatory subunit of the type II cyclic adenosine 3':5'-monophosphate-dependent protein kinase isozyme during normal and neoplastic lung development. Butley MS, Beer DG, Malkinson AM. Cancer Res; 1984 Jun 14; 44(6):2689-97. PubMed ID: 6327022 [Abstract] [Full Text] [Related]
14. Isoform specific differences in binding of a dual-specificity A-kinase anchoring protein to type I and type II regulatory subunits of PKA. Burns LL, Canaves JM, Pennypacker JK, Blumenthal DK, Taylor SS. Biochemistry; 2003 May 20; 42(19):5754-63. PubMed ID: 12741833 [Abstract] [Full Text] [Related]
15. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Kim C, Cheng CY, Saldanha SA, Taylor SS. Cell; 2007 Sep 21; 130(6):1032-43. PubMed ID: 17889648 [Abstract] [Full Text] [Related]
16. Synergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclicAMP and cyclicGMP. Leboulle G, Müller U. FEBS Lett; 2004 Oct 08; 576(1-2):216-20. PubMed ID: 15474040 [Abstract] [Full Text] [Related]
17. Definition of an electrostatic relay switch critical for the cAMP-dependent activation of protein kinase A as revealed by the D170A mutant of RIalpha. Abu-Abed M, Das R, Wang L, Melacini G. Proteins; 2007 Oct 01; 69(1):112-24. PubMed ID: 17596845 [Abstract] [Full Text] [Related]
18. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP. Wu J, Jones JM, Nguyen-Huu X, Ten Eyck LF, Taylor SS. Biochemistry; 2004 Jun 01; 43(21):6620-9. PubMed ID: 15157095 [Abstract] [Full Text] [Related]
19. Molecular basis for isoform-specific autoregulation of protein kinase A. Diskar M, Zenn HM, Kaupisch A, Prinz A, Herberg FW. Cell Signal; 2007 Oct 01; 19(10):2024-34. PubMed ID: 17614255 [Abstract] [Full Text] [Related]
20. Differential effects of substrate on type I and type II PKA holoenzyme dissociation. Vigil D, Blumenthal DK, Brown S, Taylor SS, Trewhella J. Biochemistry; 2004 May 18; 43(19):5629-36. PubMed ID: 15134437 [Abstract] [Full Text] [Related] Page: [Next] [New Search]