These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
52 related items for PubMed ID: 9056267
1. Critical roles for arginine 1061/1060 and tyrosine 1057 in Saccharomyces cerevisiae arginine-specific carbamoyl-phosphate synthetase. Lim AL, Powers-Lee SG. Arch Biochem Biophys; 1997 Mar 15; 339(2):344-52. PubMed ID: 9056267 [Abstract] [Full Text] [Related]
2. Identification of critical amino acid residues of Saccharomyces cerevisiae carbamoyl-phosphate synthetase: definition of the ATP site involved in carboxy-phosphate formation. Zheng W, Lim AL, Powers-Lee SG. Biochim Biophys Acta; 1997 Aug 15; 1341(1):35-48. PubMed ID: 9300807 [Abstract] [Full Text] [Related]
3. Location of the ATP gamma-phosphate-binding sites on rat liver carbamoyl-phosphate synthetase I. Studies with the ATP analog 5'-p-fluorosulfonylbenzoyladenosine. Potter MD, Powers-Lee SG. J Biol Chem; 1992 Jan 25; 267(3):2023-31. PubMed ID: 1730733 [Abstract] [Full Text] [Related]
4. Investigation of the ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed mutagenesis. Mueller EJ, Oh S, Kavalerchik E, Kappock TJ, Meyer E, Li C, Ealick SE, Stubbe J. Biochemistry; 1999 Aug 03; 38(31):9831-9. PubMed ID: 10433689 [Abstract] [Full Text] [Related]
5. Affinity cleavage of carbamoyl-phosphate synthetase I localizes regions of the enzyme interacting with the molecule of ATP that phosphorylates carbamate. Alonso E, Rubio V. Eur J Biochem; 1995 Apr 15; 229(2):377-84. PubMed ID: 7744060 [Abstract] [Full Text] [Related]
6. Photoaffinity labeling with the activator IMP and site-directed mutagenesis of histidine 995 of carbamoyl phosphate synthetase from Escherichia coli demonstrate that the binding site for IMP overlaps with that for the inhibitor UMP. Bueso J, Cervera J, Fresquet V, Marina A, Lusty CJ, Rubio V. Biochemistry; 1999 Mar 30; 38(13):3910-7. PubMed ID: 10194302 [Abstract] [Full Text] [Related]
7. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Iismaa SE, Chung L, Wu MJ, Teller DC, Yee VC, Graham RM. Biochemistry; 1997 Sep 30; 36(39):11655-64. PubMed ID: 9305955 [Abstract] [Full Text] [Related]
8. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication. Lazard M, Agou F, Kerjan P, Mirande M. J Mol Biol; 2000 Sep 29; 302(4):991-1004. PubMed ID: 10993737 [Abstract] [Full Text] [Related]
9. The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia. Raushel FM, Thoden JB, Holden HM. Biochemistry; 1999 Jun 22; 38(25):7891-9. PubMed ID: 10387030 [Abstract] [Full Text] [Related]
10. The tRNA-interacting factor p43 associates with mammalian arginyl-tRNA synthetase but does not modify its tRNA aminoacylation properties. Guigou L, Shalak V, Mirande M. Biochemistry; 2004 Apr 20; 43(15):4592-600. PubMed ID: 15078106 [Abstract] [Full Text] [Related]
11. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame. Hood HM, Spevak CC, Sachs MS. Fungal Genet Biol; 2007 Feb 20; 44(2):93-104. PubMed ID: 16979358 [Abstract] [Full Text] [Related]
12. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis. He F, Samra HS, Johnson EA, Degner NR, McCarty RE, Richter ML. Biochemistry; 2008 Jan 15; 47(2):836-44. PubMed ID: 18092810 [Abstract] [Full Text] [Related]
13. Mutational analysis of ATP-grasp residues in the two ATP sites of Saccharomyces cerevisiae carbamoyl phosphate synthetase. Eroglu B, Powers-Lee SG. Arch Biochem Biophys; 2002 Nov 01; 407(1):1-9. PubMed ID: 12392708 [Abstract] [Full Text] [Related]
14. Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity. Graindorge JS, Senger B, Tritch D, Simos G, Fasiolo F. Biochemistry; 2005 Feb 01; 44(4):1344-52. PubMed ID: 15667228 [Abstract] [Full Text] [Related]
15. Positive selection scanning reveals decoupling of enzymatic activities of carbamoyl phosphate synthetase in Helicobacter pylori. Davids W, Gamieldien J, Liberles DA, Hide W. J Mol Evol; 2002 Apr 01; 54(4):458-64. PubMed ID: 11956684 [Abstract] [Full Text] [Related]
16. Role of the hinge loop linking the N- and C-terminal domains of the amidotransferase subunit of carbamoyl phosphate synthetase. Huang X, Raushel FM. Arch Biochem Biophys; 2000 Aug 01; 380(1):174-80. PubMed ID: 10900147 [Abstract] [Full Text] [Related]
17. The specificity of the N-terminal SH2 domain of SHP-2 is modified by a single point mutation. Huyer G, Ramachandran C. Biochemistry; 1998 Mar 03; 37(9):2741-7. PubMed ID: 9485424 [Abstract] [Full Text] [Related]
18. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I. Faridmoayer A, Scaman CH. Glycobiology; 2005 Dec 03; 15(12):1341-8. PubMed ID: 16014748 [Abstract] [Full Text] [Related]
19. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. McGuire AT, Keates RA, Cook S, Mangroo D. Biochem Cell Biol; 2009 Apr 03; 87(2):431-43. PubMed ID: 19370060 [Abstract] [Full Text] [Related]
20. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Galperin MY, Koonin EV. Protein Sci; 1997 Dec 03; 6(12):2639-43. PubMed ID: 9416615 [Abstract] [Full Text] [Related] Page: [Next] [New Search]