These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 9057833
21. The synthesis and inhibitory activity of dethiotrypanothione and analogues against trypanothione reductase. Czechowicz JA, Wilhelm AK, Spalding MD, Larson AM, Engel LK, Alberg DG. J Org Chem; 2007 May 11; 72(10):3689-93. PubMed ID: 17439174 [Abstract] [Full Text] [Related]
22. Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi. Jones DC, Ariza A, Chow WH, Oza SL, Fairlamb AH. Mol Biochem Parasitol; 2010 Jan 11; 169(1):12-9. PubMed ID: 19747949 [Abstract] [Full Text] [Related]
23. Molecular docking of a series of peptidomimetics in the trypanothione binding site of T. cruzi trypanothione reductase. da Rocha Pita SS, Cirino JJ, de Alencastro RB, Castro HC, Rodrigues CR, Albuquerque MG. J Mol Graph Model; 2009 Nov 11; 28(4):330-5. PubMed ID: 19766515 [Abstract] [Full Text] [Related]
30. New spermine and spermidine derivatives as potent inhibitors of Trypanosoma cruzi trypanothione reductase. Bonnet B, Soullez D, Davioud-Charvet E, Landry V, Horvath D, Sergheraert C. Bioorg Med Chem; 1997 Jul 22; 5(7):1249-56. PubMed ID: 9377084 [Abstract] [Full Text] [Related]
31. Identification of potential trypanothione reductase inhibitors among commercially available β-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking. Rodríguez-Becerra J, Cáceres-Jensen L, Hernández-Ramos J, Barrientos L. Mol Divers; 2017 Aug 22; 21(3):697-711. PubMed ID: 28656524 [Abstract] [Full Text] [Related]
36. The parasite-specific trypanothione metabolism of trypanosoma and leishmania. Krauth-Siegel RL, Meiering SK, Schmidt H. Biol Chem; 2003 Apr 01; 384(4):539-49. PubMed ID: 12751784 [Abstract] [Full Text] [Related]
37. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design. Aguirre G, Cabrera E, Cerecetto H, Di Maio R, González M, Seoane G, Duffaut A, Denicola A, Gil MJ, Martínez-Merino V. Eur J Med Chem; 2004 May 01; 39(5):421-31. PubMed ID: 15110968 [Abstract] [Full Text] [Related]
38. Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z. Montrichard F, Le Guen F, Laval-Martin DL, Davioud-Charvet E. FEBS Lett; 1999 Jan 08; 442(1):29-33. PubMed ID: 9923598 [Abstract] [Full Text] [Related]
39. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. Chan C, Yin H, Garforth J, McKie JH, Jaouhari R, Speers P, Douglas KT, Rock PJ, Yardley V, Croft SL, Fairlamb AH. J Med Chem; 1998 Jan 15; 41(2):148-56. PubMed ID: 9457238 [Abstract] [Full Text] [Related]
40. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Lantwin CB, Schlichting I, Kabsch W, Pai EF, Krauth-Siegel RL. Proteins; 1994 Feb 15; 18(2):161-73. PubMed ID: 8159665 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]