These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 9060037

  • 1. Effects of tolbutamide on ATP-sensitive K+ channels from human right atrial cardiac myocytes.
    Zünkler BJ, Henning B, Ott T, Hildebrandt AG, Fleck E.
    Pharmacol Toxicol; 1997 Feb; 80(2):69-75. PubMed ID: 9060037
    [Abstract] [Full Text] [Related]

  • 2. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X, Light PE, Giles WR, French RJ.
    J Physiol; 1996 Jan 15; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [Abstract] [Full Text] [Related]

  • 3. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C, Haddad GG.
    J Neurophysiol; 1997 Jan 15; 77(1):93-102. PubMed ID: 9120601
    [Abstract] [Full Text] [Related]

  • 4. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells.
    Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J.
    Circ Res; 1998 Nov 30; 83(11):1132-43. PubMed ID: 9831708
    [Abstract] [Full Text] [Related]

  • 5. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B, Rougier O.
    J Physiol; 1997 Jan 15; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [Abstract] [Full Text] [Related]

  • 6. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle.
    Venkatesh N, Stuart JS, Lamp ST, Alexander LD, Weiss JN.
    Circ Res; 1992 Dec 15; 71(6):1324-33. PubMed ID: 1423930
    [Abstract] [Full Text] [Related]

  • 7. Hypoxia activates ATP-dependent potassium channels in inspiratory neurones of neonatal mice.
    Mironov SL, Langohr K, Haller M, Richter DW.
    J Physiol; 1998 Jun 15; 509 ( Pt 3)(Pt 3):755-66. PubMed ID: 9596797
    [Abstract] [Full Text] [Related]

  • 8. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle.
    Venkatesh N, Lamp ST, Weiss JN.
    Circ Res; 1991 Sep 15; 69(3):623-37. PubMed ID: 1908355
    [Abstract] [Full Text] [Related]

  • 9. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones.
    Sellers AJ, Boden PR, Ashford ML.
    Br J Pharmacol; 1992 Dec 15; 107(4):1068-74. PubMed ID: 1467829
    [Abstract] [Full Text] [Related]

  • 10. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres.
    Light PE, Cordeiro JM, French RJ.
    Cardiovasc Res; 1999 Nov 15; 44(2):356-69. PubMed ID: 10690312
    [Abstract] [Full Text] [Related]

  • 11. Action of cromakalim on potassium membrane conductance in isolated heart myocytes of frog.
    Pilsudski R, Rougier O, Tourneur Y.
    Br J Pharmacol; 1990 Jul 15; 100(3):581-7. PubMed ID: 2117982
    [Abstract] [Full Text] [Related]

  • 12. Comparative study of the effects of cromakalim (BRL 34915) and diazoxide on membrane potential, [Ca2+]i and ATP-sensitive potassium currents in insulin-secreting cells.
    Dunne MJ, Yule DI, Gallacher DV, Petersen OH.
    J Membr Biol; 1990 Mar 15; 114(1):53-60. PubMed ID: 2181144
    [Abstract] [Full Text] [Related]

  • 13. Comparative studies of ATP sensitive potassium channels in heart and pancreatic beta cells using Vaughan-Williams class Ia antiarrhythmics.
    Horie M, Hayashi S, Yuzuki Y, Sasayama S.
    Cardiovasc Res; 1992 Nov 15; 26(11):1087-94. PubMed ID: 1291086
    [Abstract] [Full Text] [Related]

  • 14. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD, Nelson MT.
    Am J Physiol; 1993 May 15; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [Abstract] [Full Text] [Related]

  • 15. Cromakalim and lemakalim activate Ca(2+)-dependent K+ channels in canine colon.
    Carl A, Bowen S, Gelband CH, Sanders KM, Hume JR.
    Pflugers Arch; 1992 May 15; 421(1):67-76. PubMed ID: 1630885
    [Abstract] [Full Text] [Related]

  • 16. Contribution of ATP-sensitive potassium channels to the electrophysiological effects of adenosine in guinea-pig atrial cells.
    Li GR, Feng J, Shrier A, Nattel S.
    J Physiol; 1995 May 01; 484 ( Pt 3)(Pt 3):629-42. PubMed ID: 7623281
    [Abstract] [Full Text] [Related]

  • 17. Effects of activation of ATP-sensitive K+ channels in mammalian ventricular myocytes.
    Findlay I, Deroubaix E, Guiraudou P, Coraboeuf E.
    Am J Physiol; 1989 Nov 01; 257(5 Pt 2):H1551-9. PubMed ID: 2589510
    [Abstract] [Full Text] [Related]

  • 18. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes.
    Escande D, Thuringer D, Le Guern S, Courteix J, Laville M, Cavero I.
    Pflugers Arch; 1989 Sep 01; 414(6):669-75. PubMed ID: 2510125
    [Abstract] [Full Text] [Related]

  • 19. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N, Matsuoka S, Weiss JN.
    J Gen Physiol; 1994 Oct 01; 104(4):773-800. PubMed ID: 7836941
    [Abstract] [Full Text] [Related]

  • 20. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein.
    Kamouchi M, Kitamura K.
    Am J Physiol; 1994 May 01; 266(5 Pt 2):H1687-98. PubMed ID: 8203568
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.