These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 9062117

  • 21. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC, Ishikura T, Yamato T.
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [Abstract] [Full Text] [Related]

  • 22. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin.
    Zhou F, Windemuth A, Schulten K.
    Biochemistry; 1993 Mar 09; 32(9):2291-306. PubMed ID: 8443172
    [Abstract] [Full Text] [Related]

  • 23. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ, Büldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P.
    Nature; 2000 Aug 10; 406(6796):649-53. PubMed ID: 10949308
    [Abstract] [Full Text] [Related]

  • 24. Key role of electrostatic interactions in bacteriorhodopsin proton transfer.
    Bondar AN, Fischer S, Smith JC, Elstner M, Suhai S.
    J Am Chem Soc; 2004 Nov 10; 126(44):14668-77. PubMed ID: 15521787
    [Abstract] [Full Text] [Related]

  • 25. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin.
    Xu D, Sheves M, Schulten K.
    Biophys J; 1995 Dec 10; 69(6):2745-60. PubMed ID: 8599681
    [Abstract] [Full Text] [Related]

  • 26. X-ray diffraction of bacteriorhodopsin photocycle intermediates.
    Lanyi JK.
    Mol Membr Biol; 2004 Dec 10; 21(3):143-50. PubMed ID: 15204622
    [Abstract] [Full Text] [Related]

  • 27. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H, Booth PJ.
    J Mol Biol; 2000 May 26; 299(1):233-43. PubMed ID: 10860735
    [Abstract] [Full Text] [Related]

  • 28. pK(a) Calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin.
    Spassov VZ, Luecke H, Gerwert K, Bashford D.
    J Mol Biol; 2001 Sep 07; 312(1):203-19. PubMed ID: 11545597
    [Abstract] [Full Text] [Related]

  • 29. Tuning of retinal twisting in bacteriorhodopsin controls the directionality of the early photocycle steps.
    Bondar AN, Fischer S, Suhai S, Smith JC.
    J Phys Chem B; 2005 Aug 11; 109(31):14786-8. PubMed ID: 16852870
    [Abstract] [Full Text] [Related]

  • 30. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein.
    Kandt C, Gerwert K, Schlitter J.
    Proteins; 2005 Feb 15; 58(3):528-37. PubMed ID: 15609339
    [Abstract] [Full Text] [Related]

  • 31. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.
    Smith SO, Lugtenburg J, Mathies RA.
    J Membr Biol; 1985 Feb 15; 85(2):95-109. PubMed ID: 4009698
    [Abstract] [Full Text] [Related]

  • 32. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle.
    Hayashi S, Tajkhorshid E, Schulten K.
    Biophys J; 2002 Sep 15; 83(3):1281-97. PubMed ID: 12202355
    [Abstract] [Full Text] [Related]

  • 33. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H.
    Biochemistry; 2006 Sep 05; 45(35):10674-81. PubMed ID: 16939219
    [Abstract] [Full Text] [Related]

  • 34. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle.
    Lanyi JK, Schobert B.
    J Mol Biol; 2003 Apr 25; 328(2):439-50. PubMed ID: 12691752
    [Abstract] [Full Text] [Related]

  • 35. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
    Bondar AN, Baudry J, Suhai S, Fischer S, Smith JC.
    J Phys Chem B; 2008 Nov 27; 112(47):14729-41. PubMed ID: 18973373
    [Abstract] [Full Text] [Related]

  • 36. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin.
    Chou KC, Carlacci L, Maggiora GM, Parodi LA, Schulz MW.
    Protein Sci; 1992 Jun 27; 1(6):810-27. PubMed ID: 1304922
    [Abstract] [Full Text] [Related]

  • 37. Computational studies of the early intermediates of the bacteriorhodopsin photocycle.
    Engels M, Gerwert K, Bashford D.
    Biophys Chem; 1995 Jun 27; 56(1-2):95-104. PubMed ID: 7662874
    [Abstract] [Full Text] [Related]

  • 38. Understanding structure and function in the light-driven proton pump bacteriorhodopsin.
    Lanyi JK.
    J Struct Biol; 1998 Dec 15; 124(2-3):164-78. PubMed ID: 10049804
    [Abstract] [Full Text] [Related]

  • 39. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate.
    Maeda A, Gennis RB, Balashov SP, Ebrey TG.
    Biochemistry; 2005 Apr 26; 44(16):5960-8. PubMed ID: 15835885
    [Abstract] [Full Text] [Related]

  • 40. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M.
    J Struct Biol; 2007 Mar 26; 157(3):454-69. PubMed ID: 17189704
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.