These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 9062128
1. Is there a catalytic base in the active site of cAMP-dependent protein kinase? Zhou J, Adams JA. Biochemistry; 1997 Mar 11; 36(10):2977-84. PubMed ID: 9062128 [Abstract] [Full Text] [Related]
2. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy. Lew J, Taylor SS, Adams JA. Biochemistry; 1997 Jun 03; 36(22):6717-24. PubMed ID: 9184152 [Abstract] [Full Text] [Related]
3. An ATP-linked structural change in protein kinase A precedes phosphoryl transfer under physiological magnesium concentrations. Shaffer J, Adams JA. Biochemistry; 1999 Apr 27; 38(17):5572-81. PubMed ID: 10220345 [Abstract] [Full Text] [Related]
5. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M, Kawai R, Adams JA, Weare JH. J Am Chem Soc; 2003 Aug 20; 125(33):9926-7. PubMed ID: 12914447 [Abstract] [Full Text] [Related]
6. Participation of ADP dissociation in the rate-determining step in cAMP-dependent protein kinase. Zhou J, Adams JA. Biochemistry; 1997 Dec 16; 36(50):15733-8. PubMed ID: 9398302 [Abstract] [Full Text] [Related]
7. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2. Wu H, Zheng Y, Wang ZX. Biochemistry; 2003 Feb 04; 42(4):1129-39. PubMed ID: 12549935 [Abstract] [Full Text] [Related]
8. Insight into tyrosine phosphorylation in v-Fps using proton inventory techniques. Adams JA. Biochemistry; 1996 Aug 20; 35(33):10949-56. PubMed ID: 8718888 [Abstract] [Full Text] [Related]
9. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q, Klinman JP. Biochemistry; 1998 Sep 08; 37(36):12513-25. PubMed ID: 9730824 [Abstract] [Full Text] [Related]
10. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H, Vath GM, Gleason KJ, Hanna PE, Wagner CR. Biochemistry; 2004 Jun 29; 43(25):8234-46. PubMed ID: 15209520 [Abstract] [Full Text] [Related]
11. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL, Villa JP, McDevitt P, McQueney MS, Thrall SH, Meek TD. Biochemistry; 2008 Aug 19; 47(33):8697-710. PubMed ID: 18656960 [Abstract] [Full Text] [Related]
12. Role of lysine 240 in the mechanism of yeast pyruvate kinase catalysis. Bollenbach TJ, Mesecar AD, Nowak T. Biochemistry; 1999 Jul 13; 38(28):9137-45. PubMed ID: 10413488 [Abstract] [Full Text] [Related]
13. Divalent ion effects and insights into the catalytic mechanism of protein tyrosine kinase Csk. Grace MR, Walsh CT, Cole PA. Biochemistry; 1997 Feb 18; 36(7):1874-81. PubMed ID: 9048573 [Abstract] [Full Text] [Related]
14. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase. Adams JA, Taylor SS. Protein Sci; 1993 Dec 18; 2(12):2177-86. PubMed ID: 8298463 [Abstract] [Full Text] [Related]
15. Kinetic mechanism and rate-limiting steps of focal adhesion kinase-1. Schneck JL, Briand J, Chen S, Lehr R, McDevitt P, Zhao B, Smallwood A, Concha N, Oza K, Kirkpatrick R, Yan K, Villa JP, Meek TD, Thrall SH. Biochemistry; 2010 Aug 24; 49(33):7151-63. PubMed ID: 20597513 [Abstract] [Full Text] [Related]
16. Insights into the phosphoryl-transfer mechanism of cAMP-dependent protein kinase from quantum chemical calculations and molecular dynamics simulations. Díaz N, Field MJ. J Am Chem Soc; 2004 Jan 21; 126(2):529-42. PubMed ID: 14719950 [Abstract] [Full Text] [Related]
17. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant. Susan-Resiga D, Nowak T. Biochemistry; 2004 Dec 07; 43(48):15230-45. PubMed ID: 15568816 [Abstract] [Full Text] [Related]
18. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE, Liu D, Rao GS, Harris BG, Cook PF. Biochemistry; 2005 Mar 08; 44(9):3626-35. PubMed ID: 15736972 [Abstract] [Full Text] [Related]
19. Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction. Futer O, Saadat AR, Doran JD, Raybuck SA, Pazhanisamy S. Biochemistry; 2006 Jun 27; 45(25):7913-23. PubMed ID: 16784244 [Abstract] [Full Text] [Related]
20. Two rate-limiting steps in the kinetic mechanism of the serine/threonine specific protein kinase ERK2: a case of fast phosphorylation followed by fast product release. Waas WF, Rainey MA, Szafranska AE, Dalby KN. Biochemistry; 2003 Oct 28; 42(42):12273-86. PubMed ID: 14567689 [Abstract] [Full Text] [Related] Page: [Next] [New Search]