These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 9066293

  • 1. The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry.
    Georgakoudi I, Nichols MG, Foster TH.
    Photochem Photobiol; 1997 Jan; 65(1):135-44. PubMed ID: 9066293
    [Abstract] [Full Text] [Related]

  • 2. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro.
    Dysart JS, Patterson MS.
    Phys Med Biol; 2005 Jun 07; 50(11):2597-616. PubMed ID: 15901957
    [Abstract] [Full Text] [Related]

  • 3. Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry.
    Georgakoudi I, Foster TH.
    Photochem Photobiol; 1998 Jun 07; 67(6):612-25. PubMed ID: 9648527
    [Abstract] [Full Text] [Related]

  • 4. Cellular accumulation and biological activity of hematoporphyrin derivative(L) in comparison with photofrin II.
    Khanum F, Jain V.
    Indian J Exp Biol; 1997 Apr 07; 35(4):348-55. PubMed ID: 9315233
    [Abstract] [Full Text] [Related]

  • 5. Photobleaching kinetics of Photofrin in vivo and in multicell tumour spheroids indicate two simultaneous bleaching mechanisms.
    Finlay JC, Mitra S, Patterson MS, Foster TH.
    Phys Med Biol; 2004 Nov 07; 49(21):4837-60. PubMed ID: 15584523
    [Abstract] [Full Text] [Related]

  • 6. A chemical dosimeter for the determination of the photodynamic activity of photosensitizers.
    Fischer F, Graschew G, Sinn HJ, Maier-Borst W, Lorenz WJ, Schlag PM.
    Clin Chim Acta; 1998 Jun 08; 274(1):89-104. PubMed ID: 9681600
    [Abstract] [Full Text] [Related]

  • 7. Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity.
    Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG.
    Antimicrob Agents Chemother; 2005 Oct 08; 49(10):4288-95. PubMed ID: 16189110
    [Abstract] [Full Text] [Related]

  • 8. Photophysical parameters, photosensitizer retention and tissue optical properties completely account for the higher photodynamic efficacy of meso-tetra-hydroxyphenyl-chlorin vs Photofrin.
    Mitra S, Foster TH.
    Photochem Photobiol; 2005 Oct 08; 81(4):849-59. PubMed ID: 15807635
    [Abstract] [Full Text] [Related]

  • 9. Photodynamic effects on the nuclear envelope of human skin fibroblasts.
    Krammer B, Hubmer A, Hermann A.
    J Photochem Photobiol B; 1993 Feb 08; 17(2):109-14. PubMed ID: 8459315
    [Abstract] [Full Text] [Related]

  • 10. Predictions of mathematical models of tissue oxygenation and generation of singlet oxygen during photodynamic therapy.
    Yuan J, Mahama-Relue PA, Fournier RL, Hampton JA.
    Radiat Res; 1997 Oct 08; 148(4):386-94. PubMed ID: 9339955
    [Abstract] [Full Text] [Related]

  • 11. Effects of fluence rate on cell survival and photobleaching in meta-tetra-(hydroxyphenyl)chlorin-photosensitized Colo 26 multicell tumor spheroids.
    Coutier S, Mitra S, Bezdetnaya LN, Parache RM, Georgakoudi I, Foster TH, Guillemin F.
    Photochem Photobiol; 2001 Mar 08; 73(3):297-303. PubMed ID: 11281027
    [Abstract] [Full Text] [Related]

  • 12. A comprehensive mathematical model of microscopic dose deposition in photodynamic therapy.
    Wang KK, Mitra S, Foster TH.
    Med Phys; 2007 Jan 08; 34(1):282-93. PubMed ID: 17278514
    [Abstract] [Full Text] [Related]

  • 13. 1O2 determined from the measured PDT dose and 3O2 predicts long-term response to Photofrin-mediated PDT.
    Penjweini R, Kim MM, Ong YH, Zhu TC.
    Phys Med Biol; 2020 Jan 24; 65(3):03LT01. PubMed ID: 31751964
    [Abstract] [Full Text] [Related]

  • 14. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids.
    Nichols MG, Foster TH.
    Phys Med Biol; 1994 Dec 24; 39(12):2161-81. PubMed ID: 15551546
    [Abstract] [Full Text] [Related]

  • 15. Mechanism of photodynamic therapy-induced cell death.
    Ahmad N, Mukhtar H.
    Methods Enzymol; 2000 Dec 24; 319():342-58. PubMed ID: 10907525
    [No Abstract] [Full Text] [Related]

  • 16. Susceptibility of Candida species to photodynamic effects of photofrin.
    Bliss JM, Bigelow CE, Foster TH, Haidaris CG.
    Antimicrob Agents Chemother; 2004 Jun 24; 48(6):2000-6. PubMed ID: 15155191
    [Abstract] [Full Text] [Related]

  • 17. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins.
    Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM.
    Cancer Res; 1996 May 15; 56(10):2355-60. PubMed ID: 8625311
    [Abstract] [Full Text] [Related]

  • 18. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT).
    Ong YH, Kim MM, Finlay JC, Dimofte A, Singhal S, Glatstein E, Cengel KA, Zhu TC.
    Phys Med Biol; 2017 Dec 29; 63(1):015031. PubMed ID: 29106380
    [Abstract] [Full Text] [Related]

  • 19. Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin.
    Spikes JD.
    Photochem Photobiol; 1992 Jun 29; 55(6):797-808. PubMed ID: 1409888
    [Abstract] [Full Text] [Related]

  • 20. Comparison of the in vivo photodynamic threshold dose for photofrin, mono- and tetrasulfonated aluminum phthalocyanine using a rat liver model.
    Farrell TJ, Wilson BC, Patterson MS, Olivo MC.
    Photochem Photobiol; 1998 Sep 29; 68(3):394-9. PubMed ID: 9747595
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.