These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A role for Xenopus Frizzled 8 in dorsal development. Itoh K, Jacob J, Y Sokol S. Mech Dev; 1998 Jun; 74(1-2):145-57. PubMed ID: 9651509 [Abstract] [Full Text] [Related]
6. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Sokol SY, Klingensmith J, Perrimon N, Itoh K. Development; 1995 Jun; 121(6):1637-47. PubMed ID: 7600981 [Abstract] [Full Text] [Related]
7. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Blitz IL, Cho KW. Development; 1995 Apr; 121(4):993-1004. PubMed ID: 7743941 [Abstract] [Full Text] [Related]
10. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Kengaku M, Okamoto H. Development; 1995 Sep; 121(9):3121-30. PubMed ID: 7555736 [Abstract] [Full Text] [Related]
11. Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. Latinkić BV, Kotecha S, Mohun TJ. Development; 2003 Aug; 130(16):3865-76. PubMed ID: 12835401 [Abstract] [Full Text] [Related]
12. The pregastrula establishment of gene expression pattern in Xenopus embryos: requirements for local cell interactions and for protein synthesis. Sokol SY. Dev Biol; 1994 Dec; 166(2):782-8. PubMed ID: 7813795 [Abstract] [Full Text] [Related]
13. Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Bang AG, Papalopulu N, Kintner C, Goulding MD. Development; 1997 May; 124(10):2075-85. PubMed ID: 9169853 [Abstract] [Full Text] [Related]
14. The involvement of cAMP signaling pathway in axis specification in Xenopus embryos. Kim MJ, Han JK. Mech Dev; 1999 Dec; 89(1-2):55-64. PubMed ID: 10559480 [Abstract] [Full Text] [Related]
15. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis. Vodicka MA, Gerhart JC. Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265 [Abstract] [Full Text] [Related]
16. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. Kuroda H, Wessely O, De Robertis EM. PLoS Biol; 2004 May; 2(5):E92. PubMed ID: 15138495 [Abstract] [Full Text] [Related]
17. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Hikasa H, Shibata M, Hiratani I, Taira M. Development; 2002 Nov; 129(22):5227-39. PubMed ID: 12399314 [Abstract] [Full Text] [Related]
18. Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Xu Q, D'Amore PA, Sokol SY. Development; 1998 Dec; 125(23):4767-76. PubMed ID: 9806925 [Abstract] [Full Text] [Related]
19. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development. Re'em-Kalma Y, Lamb T, Frank D. Proc Natl Acad Sci U S A; 1995 Dec 19; 92(26):12141-5. PubMed ID: 8618860 [Abstract] [Full Text] [Related]
20. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Erter CE, Wilm TP, Basler N, Wright CV, Solnica-Krezel L. Development; 2001 Sep 19; 128(18):3571-83. PubMed ID: 11566861 [Abstract] [Full Text] [Related] Page: [Next] [New Search]