These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 9081311

  • 1. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF, Mason DR, Maxwell FJ, Peck MW.
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [Abstract] [Full Text] [Related]

  • 2. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF, Mason DR, Peck MW.
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME, Paranjpye RN, Poysky FT, Pelroy GA, Eklund MW.
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [Abstract] [Full Text] [Related]

  • 8. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage.
    Boix E, Couvert O, André S, Coroller L.
    Food Microbiol; 2021 Dec; 100():103832. PubMed ID: 34416948
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M, Kiviniemi K, Korkeala H.
    Int J Food Microbiol; 2006 Apr 15; 108(1):92-104. PubMed ID: 16480785
    [Abstract] [Full Text] [Related]

  • 11. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack.
    Kimura B, Kimura R, Fukaya T, Sakuma K, Miya S, Fujii T.
    J Food Prot; 2008 Mar 15; 71(3):468-72. PubMed ID: 18389687
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M, Stecchini ML, Braconnier A, Peck MW.
    Int J Food Microbiol; 2004 Nov 01; 96(2):115-31. PubMed ID: 15364467
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Clostridium botulinum type A growth and toxin production in media and process cheese spread.
    Briozzo J, de Lagarde EA, Chirife J, Parada JL.
    Appl Environ Microbiol; 1983 Mar 01; 45(3):1150-2. PubMed ID: 6342535
    [Abstract] [Full Text] [Related]

  • 18. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum.
    Stringer SC, Fairbairn DA, Peck MW.
    J Appl Microbiol; 1997 Jan 01; 82(1):128-36. PubMed ID: 9113882
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.