These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
679 related items for PubMed ID: 9083109
1. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Sriram M, Osipiuk J, Freeman B, Morimoto R, Joachimiak A. Structure; 1997 Mar 15; 5(3):403-14. PubMed ID: 9083109 [Abstract] [Full Text] [Related]
2. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Sondermann H, Scheufler C, Schneider C, Hohfeld J, Hartl FU, Moarefi I. Science; 2001 Feb 23; 291(5508):1553-7. PubMed ID: 11222862 [Abstract] [Full Text] [Related]
3. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Russell R, Jordan R, McMacken R. Biochemistry; 1998 Jan 13; 37(2):596-607. PubMed ID: 9425082 [Abstract] [Full Text] [Related]
4. ATPase domain of Hsp70 exhibits intrinsic ATP-ADP exchange activity. Mao Y, Deng A, Qu N, Wu X. Biochemistry (Mosc); 2006 Nov 13; 71(11):1222-9. PubMed ID: 17140383 [Abstract] [Full Text] [Related]
5. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q. Nat Struct Mol Biol; 2013 Jul 13; 20(7):900-7. PubMed ID: 23708608 [Abstract] [Full Text] [Related]
6. Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. Davis JE, Voisine C, Craig EA. Proc Natl Acad Sci U S A; 1999 Aug 03; 96(16):9269-76. PubMed ID: 10430932 [Abstract] [Full Text] [Related]
7. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Landry SJ. Biochemistry; 2003 May 06; 42(17):4926-36. PubMed ID: 12718534 [Abstract] [Full Text] [Related]
8. A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Buchberger A, Schröder H, Büttner M, Valencia A, Bukau B. Nat Struct Biol; 1994 Feb 06; 1(2):95-101. PubMed ID: 7656024 [Abstract] [Full Text] [Related]
9. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA. Proc Natl Acad Sci U S A; 1998 Dec 22; 95(26):15223-8. PubMed ID: 9860950 [Abstract] [Full Text] [Related]
10. Interdomain communication in the molecular chaperone DnaK. Han W, Christen P. Biochem J; 2003 Feb 01; 369(Pt 3):627-34. PubMed ID: 12383055 [Abstract] [Full Text] [Related]
11. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B. J Biol Chem; 1995 Jul 14; 270(28):16903-10. PubMed ID: 7622507 [Abstract] [Full Text] [Related]
12. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J. Science; 1997 Apr 18; 276(5311):431-5. PubMed ID: 9103205 [Abstract] [Full Text] [Related]
13. Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication. Buchberger A, Gässler CS, Büttner M, McMacken R, Bukau B. J Biol Chem; 1999 Dec 31; 274(53):38017-26. PubMed ID: 10608870 [Abstract] [Full Text] [Related]
14. The second metal-binding site of 70 kDa heat-shock protein is essential for ADP binding, ATP hydrolysis and ATP synthesis. Wu X, Yano M, Washida H, Kido H. Biochem J; 2004 Mar 15; 378(Pt 3):793-9. PubMed ID: 14664695 [Abstract] [Full Text] [Related]
16. Hsp70 chaperones: cellular functions and molecular mechanism. Mayer MP, Bukau B. Cell Mol Life Sci; 2005 Mar 15; 62(6):670-84. PubMed ID: 15770419 [Abstract] [Full Text] [Related]
17. The carboxyl-terminal lobe of Hsc70 ATPase domain is sufficient for binding to BAG1. Brive L, Takayama S, Briknarová K, Homma S, Ishida SK, Reed JC, Ely KR. Biochem Biophys Res Commun; 2001 Dec 21; 289(5):1099-105. PubMed ID: 11741305 [Abstract] [Full Text] [Related]
18. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. Mol Cell; 2007 Apr 13; 26(1):27-39. PubMed ID: 17434124 [Abstract] [Full Text] [Related]
19. Interdomain communication suppressing high intrinsic ATPase activity of Sse1 is essential for its co-disaggregase activity with Ssa1. Kumar V, Peter JJ, Sagar A, Ray A, Jha MP, Rebeaud ME, Tiwari S, Goloubinoff P, Ashish F, Mapa K. FEBS J; 2020 Feb 13; 287(4):671-694. PubMed ID: 31423733 [Abstract] [Full Text] [Related]
20. Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. Fung KL, Hilgenberg L, Wang NM, Chirico WJ. J Biol Chem; 1996 Aug 30; 271(35):21559-65. PubMed ID: 8702942 [Abstract] [Full Text] [Related] Page: [Next] [New Search]