These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 9087913
1. Conformational changes in the GroEL oligomer during the functional cycle. Llorca O, Marco S, Carrascosa JL, Valpuesta JM. J Struct Biol; 1997 Feb; 118(1):31-42. PubMed ID: 9087913 [Abstract] [Full Text] [Related]
2. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Kad NM, Ranson NA, Cliff MJ, Clarke AR. J Mol Biol; 1998 Apr 24; 278(1):267-78. PubMed ID: 9571049 [Abstract] [Full Text] [Related]
3. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR. J Mol Biol; 1999 Oct 29; 293(3):667-84. PubMed ID: 10543958 [Abstract] [Full Text] [Related]
4. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Behlke J, Ristau O, Schönfeld HJ. Biochemistry; 1997 Apr 29; 36(17):5149-56. PubMed ID: 9136876 [Abstract] [Full Text] [Related]
5. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides. Gorovits BM, Ybarra J, Seale JW, Horowitz PM. J Biol Chem; 1997 Oct 24; 272(43):26999-7004. PubMed ID: 9341138 [Abstract] [Full Text] [Related]
6. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. Poso D, Clarke AR, Burston SG. J Mol Biol; 2004 May 14; 338(5):969-77. PubMed ID: 15111060 [Abstract] [Full Text] [Related]
7. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL. Nature; 1997 Aug 21; 388(6644):792-8. PubMed ID: 9285593 [Abstract] [Full Text] [Related]
8. Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. Roseman AM, Ranson NA, Gowen B, Fuller SD, Saibil HR. J Struct Biol; 2001 Aug 21; 135(2):115-25. PubMed ID: 11580261 [Abstract] [Full Text] [Related]
9. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin. Makio T, Takasu-Ishikawa E, Kuwajima K. J Mol Biol; 2001 Sep 21; 312(3):555-67. PubMed ID: 11563916 [Abstract] [Full Text] [Related]
10. Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP. Inobe T, Makio T, Takasu-Ishikawa E, Terada TP, Kuwajima K. Biochim Biophys Acta; 2001 Feb 09; 1545(1-2):160-73. PubMed ID: 11342042 [Abstract] [Full Text] [Related]
11. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Xu Z, Horwich AL, Sigler PB. Nature; 1997 Aug 21; 388(6644):741-50. PubMed ID: 9285585 [Abstract] [Full Text] [Related]
12. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Hayer-Hartl MK, Weber F, Hartl FU. EMBO J; 1996 Nov 15; 15(22):6111-21. PubMed ID: 8947033 [Abstract] [Full Text] [Related]
13. GroEL/GroES: structure and function of a two-stroke folding machine. Xu Z, Sigler PB. J Struct Biol; 1998 Dec 15; 124(2-3):129-41. PubMed ID: 10049801 [Abstract] [Full Text] [Related]
14. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Motojima F, Chaudhry C, Fenton WA, Farr GW, Horwich AL. Proc Natl Acad Sci U S A; 2004 Oct 19; 101(42):15005-12. PubMed ID: 15479763 [Abstract] [Full Text] [Related]
15. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K. EMBO J; 2006 Oct 04; 25(19):4567-76. PubMed ID: 16977315 [Abstract] [Full Text] [Related]
16. Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. Chaudhry C, Horwich AL, Brunger AT, Adams PD. J Mol Biol; 2004 Sep 03; 342(1):229-45. PubMed ID: 15313620 [Abstract] [Full Text] [Related]
17. Effects of the inter-ring communication in GroEL structural and functional asymmetry. Llorca O, Pérez-Pérez J, Carrascosa JL, Galán A, Muga A, Valpuesta JM. J Biol Chem; 1997 Dec 26; 272(52):32925-32. PubMed ID: 9407071 [Abstract] [Full Text] [Related]
18. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Roseman AM, Chen S, White H, Braig K, Saibil HR. Cell; 1996 Oct 18; 87(2):241-51. PubMed ID: 8861908 [Abstract] [Full Text] [Related]
19. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. Tehver R, Chen J, Thirumalai D. J Mol Biol; 2009 Mar 27; 387(2):390-406. PubMed ID: 19121324 [Abstract] [Full Text] [Related]
20. Allosteric control by ATP of non-folded protein binding to GroEL. Yifrach O, Horovitz A. J Mol Biol; 1996 Jan 26; 255(3):356-61. PubMed ID: 8568880 [Abstract] [Full Text] [Related] Page: [Next] [New Search]