These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 9088348

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Trans-complementation by human apurinic endonuclease (Ape) of hypersensitivity to DNA damage and spontaneous mutator phenotype in apn1-yeast.
    Wilson DM, Bennett RA, Marquis JC, Ansari P, Demple B.
    Nucleic Acids Res; 1995 Dec 25; 23(24):5027-33. PubMed ID: 8559661
    [Abstract] [Full Text] [Related]

  • 3. Apurinic endonuclease (Ref-1) is induced in mammalian cells by oxidative stress and involved in clastogenic adaptation.
    Grösch S, Fritz G, Kaina B.
    Cancer Res; 1998 Oct 01; 58(19):4410-6. PubMed ID: 9766671
    [Abstract] [Full Text] [Related]

  • 4. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae.
    Hanna M, Chow BL, Morey NJ, Jinks-Robertson S, Doetsch PW, Xiao W.
    DNA Repair (Amst); 2004 Jan 05; 3(1):51-9. PubMed ID: 14697759
    [Abstract] [Full Text] [Related]

  • 5. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants.
    Robson CN, Hickson ID.
    Nucleic Acids Res; 1991 Oct 25; 19(20):5519-23. PubMed ID: 1719477
    [Abstract] [Full Text] [Related]

  • 6. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
    Kanno S, Iwai S, Takao M, Yasui A.
    Nucleic Acids Res; 1999 Aug 01; 27(15):3096-103. PubMed ID: 10454605
    [Abstract] [Full Text] [Related]

  • 7. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3' phosphatases.
    Vance JR, Wilson TE.
    Mol Cell Biol; 2001 Nov 01; 21(21):7191-8. PubMed ID: 11585902
    [Abstract] [Full Text] [Related]

  • 8. A dominant-negative form of the major human abasic endonuclease enhances cellular sensitivity to laboratory and clinical DNA-damaging agents.
    McNeill DR, Wilson DM.
    Mol Cancer Res; 2007 Jan 01; 5(1):61-70. PubMed ID: 17259346
    [Abstract] [Full Text] [Related]

  • 9. Stable expression in rat glioma cells of sense and antisense nucleic acids to a human multifunctional DNA repair enzyme, APEX nuclease.
    Ono Y, Furuta T, Ohmoto T, Akiyama K, Seki S.
    Mutat Res; 1994 Jul 01; 315(1):55-63. PubMed ID: 7517011
    [Abstract] [Full Text] [Related]

  • 10. Relationship between expression of a major apurinic/apyrimidinic endonuclease (APEX nuclease) and susceptibility to genotoxic agents in human glioma cell lines.
    Ono Y, Matsumoto K, Furuta T, Ohmoto T, Akiyama K, Seki S.
    J Neurooncol; 1995 Jul 01; 25(3):183-92. PubMed ID: 8592168
    [Abstract] [Full Text] [Related]

  • 11. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases.
    Xiao W, Chow BL, Hanna M, Doetsch PW.
    Mutat Res; 2001 Dec 19; 487(3-4):137-47. PubMed ID: 11738940
    [Abstract] [Full Text] [Related]

  • 12. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA.
    Dyakonova ES, Koval VV, Lomzov AA, Ishchenko AA, Fedorova OS.
    Biochim Biophys Acta; 2015 Jun 19; 1850(6):1297-309. PubMed ID: 25766873
    [Abstract] [Full Text] [Related]

  • 13. Functional expression of Escherichia coli endonuclease IV in apurinic endonuclease-deficient yeast.
    Ramotar D, Demple B.
    J Biol Chem; 1996 Mar 29; 271(13):7368-74. PubMed ID: 8631759
    [Abstract] [Full Text] [Related]

  • 14. The major role of human AP-endonuclease homolog Apn2 in repair of abasic sites in Schizosaccharomyces pombe.
    Ribar B, Izumi T, Mitra S.
    Nucleic Acids Res; 2004 Mar 29; 32(1):115-26. PubMed ID: 14704348
    [Abstract] [Full Text] [Related]

  • 15. The stalling of transcription at abasic sites is highly mutagenic.
    Yu SL, Lee SK, Johnson RE, Prakash L, Prakash S.
    Mol Cell Biol; 2003 Jan 29; 23(1):382-8. PubMed ID: 12482989
    [Abstract] [Full Text] [Related]

  • 16. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis.
    Bennett RA.
    Mol Cell Biol; 1999 Mar 29; 19(3):1800-9. PubMed ID: 10022867
    [Abstract] [Full Text] [Related]

  • 17. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA.
    Wu X, Wang Z.
    Nucleic Acids Res; 1999 Feb 15; 27(4):956-62. PubMed ID: 9927726
    [Abstract] [Full Text] [Related]

  • 18. Complementation of DNA repair-deficient Escherichia coli by the yeast Apn1 apurinic/apyrimidinic endonuclease gene.
    Ramotar D, Popoff SC, Demple B.
    Mol Microbiol; 1991 Jan 15; 5(1):149-55. PubMed ID: 1707475
    [Abstract] [Full Text] [Related]

  • 19. Normal processing of AP sites in Apn1-deficient Saccharomyces cerevisiae is restored by Escherichia coli genes expressing either exonuclease III or endonuclease III.
    Masson JY, Ramotar D.
    Mol Microbiol; 1997 May 15; 24(4):711-21. PubMed ID: 9194699
    [Abstract] [Full Text] [Related]

  • 20. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae.
    Swanson RL, Morey NJ, Doetsch PW, Jinks-Robertson S.
    Mol Cell Biol; 1999 Apr 15; 19(4):2929-35. PubMed ID: 10082560
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.