These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
392 related items for PubMed ID: 909768
1. Digestion of insect chromatin with micrococcal nuclease, DNase I and DNase I combined with single-strand specific nuclease S1. Schmidt ER. Nucleic Acids Res; 1977 Jul; 4(7):2169-80. PubMed ID: 909768 [Abstract] [Full Text] [Related]
2. Structure of eukaryotic chromatin. Evaluation of periodicity using endogenous and exogenous nucleases. Keichline LD, Villee CA, Wassarman PM. Biochim Biophys Acta; 1976 Feb 18; 425(1):84-94. PubMed ID: 1247619 [Abstract] [Full Text] [Related]
3. Analysis of chromatin of skeletal muscle of developing rats using micrococcal nuclease and DNase I. Pandey RS, Kanungo MS. Mol Biol Rep; 1984 Jan 18; 9(4):245-51. PubMed ID: 6708951 [Abstract] [Full Text] [Related]
4. Chromatin assembly in isolated mammalian nuclei. Shelton ER, Kang J, Wassarman PM, DePamphilis ML. Nucleic Acids Res; 1978 Feb 18; 5(2):349-62. PubMed ID: 634792 [Abstract] [Full Text] [Related]
5. Chromatin structure of the chicken beta-globin gene region. Sensitivity to DNase I, micrococcal nuclease, and DNase II. Wood WI, Felsenfeld G. J Biol Chem; 1982 Jul 10; 257(13):7730-6. PubMed ID: 6282852 [Abstract] [Full Text] [Related]
6. Analysis of chromatin of the brain of young and old rats by micrococcal nuclease and DNase I. Chaturvedi MM, Kanungo MS. Biochem Int; 1983 Mar 10; 6(3):357-63. PubMed ID: 6236818 [Abstract] [Full Text] [Related]
7. Digestion of chromatin with deoxyribonuclease II. Yaneva M, Dessev G. Mol Biol Rep; 1977 Mar 10; 3(3):227-34. PubMed ID: 870818 [Abstract] [Full Text] [Related]
8. Analysis of DNA double- and single-strand breaks by two dimensional electrophoresis: action of micrococcal nuclease on chromatin and DNA, and degradation in vivo of lens fiber chromatin. Modak SP, Beard P. Nucleic Acids Res; 1980 Jun 25; 8(12):2665-78. PubMed ID: 6253888 [Abstract] [Full Text] [Related]
9. Deoxyribonuclease I generates single-stranded gaps in chromatin deoxyribonucleic acid. Riley DE. Biochemistry; 1980 Jun 24; 19(13):2977-92. PubMed ID: 6249343 [Abstract] [Full Text] [Related]
11. Binding of polylysine to chromatin subunits and cleavage by micrococcal nuclease. A comparison of accessible sites. Doenecke D. Eur J Biochem; 1977 Jun 15; 76(2):355-63. PubMed ID: 891521 [Abstract] [Full Text] [Related]
16. Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase I and DNase II: possible location of HMG-T in the spacer region between core nucleosomes. Levy W B, Wong NC, Dixon GH. Proc Natl Acad Sci U S A; 1977 Jul 15; 74(7):2810-4. PubMed ID: 268631 [Abstract] [Full Text] [Related]
17. Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease. Axel R. Biochemistry; 1975 Jul 15; 14(13):2921-5. PubMed ID: 1148185 [Abstract] [Full Text] [Related]
18. Thermal denaturation of DNA in the chromatin fragments released by mild micrococcal nuclease digestion of HTC cell nuclei. Kitzis A, Leibovitch SA, Paris B, Tichonicky L, Kruh J. Biochem Biophys Res Commun; 1982 Dec 15; 109(3):612-8. PubMed ID: 7159435 [No Abstract] [Full Text] [Related]
19. Artifacts accompanying digestion of chromatin with micrococcal nuclease. Yaneva M, Dessev G. Mol Biol Rep; 1977 Mar 15; 3(3):223-6. PubMed ID: 859503 [No Abstract] [Full Text] [Related]
20. Association of the thyroid hormone receptor with rat liver chromatin. Jump DB, Seelig S, Schwartz HL, Oppenheimer JH. Biochemistry; 1981 Nov 24; 20(24):6781-9. PubMed ID: 6274379 [Abstract] [Full Text] [Related] Page: [Next] [New Search]