These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 9099692
1. Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. Rodriguez de Turco EB, Deretic D, Bazan NG, Papermaster DS. J Biol Chem; 1997 Apr 18; 272(16):10491-7. PubMed ID: 9099692 [Abstract] [Full Text] [Related]
2. Strong association of unesterified [3H]docosahexaenoic acid and [3H-docosahexaenoyl]phosphatidate to rhodopsin during in vivo labeling of frog retinal rod outer segments. de Turco EB, Jackson FR, Parkins N, Gordon WC. Neurochem Res; 2000 May 18; 25(5):695-703. PubMed ID: 10905632 [Abstract] [Full Text] [Related]
3. Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. Deretic D, Papermaster DS. J Cell Sci; 1993 Nov 18; 106 ( Pt 3)():803-13. PubMed ID: 8308063 [Abstract] [Full Text] [Related]
4. Cytoplasmic domain of rhodopsin is essential for post-Golgi vesicle formation in a retinal cell-free system. Deretic D, Puleo-Scheppke B, Trippe C. J Biol Chem; 1996 Jan 26; 271(4):2279-86. PubMed ID: 8567690 [Abstract] [Full Text] [Related]
5. Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells. Deretic D, Papermaster DS. J Cell Biol; 1991 Jun 26; 113(6):1281-93. PubMed ID: 1828467 [Abstract] [Full Text] [Related]
6. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. Gordon WC, Bazan NG. J Neurosci; 1990 Jul 26; 10(7):2190-202. PubMed ID: 2142959 [Abstract] [Full Text] [Related]
7. Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. Mazelova J, Ransom N, Astuto-Gribble L, Wilson MC, Deretic D. J Cell Sci; 2009 Jun 15; 122(Pt 12):2003-13. PubMed ID: 19454479 [Abstract] [Full Text] [Related]
15. Towards the proteome of the rhodopsin-bearing post-Golgi compartment of retinal photoreceptor cells. Morel V, Poschet R, Traverso V, Deretic D. Electrophoresis; 2000 Oct 15; 21(16):3460-9. PubMed ID: 11079565 [Abstract] [Full Text] [Related]
16. Dietary 20:4n-6 and 22:6n-3 modulates the profile of long- and very-long-chain fatty acids, rhodopsin content, and kinetics in developing photoreceptor cells. Suh M, Wierzbicki AA, Lien EL, Clandinin MT. Pediatr Res; 2000 Oct 15; 48(4):524-30. PubMed ID: 11004245 [Abstract] [Full Text] [Related]
17. Metabolism in frog retinal pigment epithelium of docosahexaenoic and arachidonic acids derived from rod outer segment membranes. Chen H, Anderson RE. Exp Eye Res; 1993 Sep 15; 57(3):369-77. PubMed ID: 8224024 [Abstract] [Full Text] [Related]
18. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. Fliesler SJ, Rayborn ME, Hollyfield JG. J Cell Biol; 1985 Feb 15; 100(2):574-87. PubMed ID: 3155750 [Abstract] [Full Text] [Related]
19. The localization and timing of post-translational modifications of rat rhodopsin. St Jules RS, Smith SB, O'Brien PJ. Exp Eye Res; 1990 Oct 15; 51(4):427-34. PubMed ID: 2209754 [Abstract] [Full Text] [Related]