These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin. Steinberg G, Sheves M, Bressler S, Ottolenghi M. Biochemistry; 1994 Oct 18; 33(41):12439-50. PubMed ID: 7918466 [Abstract] [Full Text] [Related]
3. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Balashov SP, Imasheva ES, Govindjee R, Ebrey TG. Biophys J; 1996 Jan 18; 70(1):473-81. PubMed ID: 8770224 [Abstract] [Full Text] [Related]
4. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Richter HT, Brown LS, Needleman R, Lanyi JK. Biochemistry; 1996 Apr 02; 35(13):4054-62. PubMed ID: 8672439 [Abstract] [Full Text] [Related]
5. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Govindjee R, Misra S, Balashov SP, Ebrey TG, Crouch RK, Menick DR. Biophys J; 1996 Aug 02; 71(2):1011-23. PubMed ID: 8842238 [Abstract] [Full Text] [Related]
6. Local-access model for proton transfer in bacteriorhodopsin. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biochemistry; 1998 Mar 17; 37(11):3982-93. PubMed ID: 9521720 [Abstract] [Full Text] [Related]
7. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Thorgeirsson TE, Milder SJ, Miercke LJ, Betlach MC, Shand RF, Stroud RM, Kliger DS. Biochemistry; 1991 Sep 24; 30(38):9133-42. PubMed ID: 1892824 [Abstract] [Full Text] [Related]
8. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. Biophys J; 1999 Nov 24; 77(5):2750-63. PubMed ID: 10545374 [Abstract] [Full Text] [Related]
9. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH. Balashov SP, Lu M, Imasheva ES, Govindjee R, Ebrey TG, Othersen B, Chen Y, Crouch RK, Menick DR. Biochemistry; 1999 Feb 16; 38(7):2026-39. PubMed ID: 10026285 [Abstract] [Full Text] [Related]
10. Generation of the O630 photointermediate of bacteriorhodopsin is controlled by the state of protonation of several protein residues. Bressler S, Friedman N, Li Q, Ottolenghi M, Saha C, Sheves M. Biochemistry; 1999 Feb 16; 38(7):2018-25. PubMed ID: 10026284 [Abstract] [Full Text] [Related]
11. Time-resolved titrations of ASP-85 in bacteriorhodopsin: the multicomponent kinetic mechanism. Friedman N, Rousso I, Sheves M, Fu X, Bressler S, Druckmann S, Ottolenghi M. Biochemistry; 1997 Sep 23; 36(38):11369-80. PubMed ID: 9298956 [Abstract] [Full Text] [Related]
12. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U, Asato AE, Sheves M. Biochemistry; 2005 Jun 14; 44(23):8479-85. PubMed ID: 15938637 [Abstract] [Full Text] [Related]
13. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H, Marti T, Holz M, Mogi T, Stern LJ, Engel F, Khorana HG, Heyn MP. Proc Natl Acad Sci U S A; 1990 Feb 14; 87(3):1018-22. PubMed ID: 2153966 [Abstract] [Full Text] [Related]
14. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant. Lu M, Balashov SP, Ebrey TG, Chen N, Chen Y, Menick DR, Crouch RK. Biochemistry; 2000 Mar 07; 39(9):2325-31. PubMed ID: 10694399 [Abstract] [Full Text] [Related]
17. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME, Hu JG, Belenky M, Verdegem P, Lugtenburg J, Griffin RG, Herzfeld J. Biophys J; 2002 Feb 07; 82(2):1017-29. PubMed ID: 11806941 [Abstract] [Full Text] [Related]
18. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Rousso I, Friedman N, Sheves M, Ottolenghi M. Biochemistry; 1995 Sep 19; 34(37):12059-65. PubMed ID: 7547944 [Abstract] [Full Text] [Related]
20. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Brown LS, Needleman R, Lanyi JK. Biochemistry; 1996 Dec 17; 35(50):16048-54. PubMed ID: 8973174 [Abstract] [Full Text] [Related] Page: [Next] [New Search]