These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 9101029

  • 1. Electrical properties of periglomerular cells in the frog olfactory bulb.
    Magherini PC, Bardoni R, Belluzzi O.
    Arch Ital Biol; 1997 Mar; 135(2):195-203. PubMed ID: 9101029
    [Abstract] [Full Text] [Related]

  • 2. Sodium current in periglomerular cells of frog olfactory bulb in vitro.
    Bardoni R, Magherini PC, Belluzzi O.
    Brain Res; 1995 Dec 12; 703(1-2):19-25. PubMed ID: 8719611
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Patch-clamp recordings of spiking and nonspiking interneurons from rabbit olfactory bulb slices: membrane properties and ionic currents.
    Bufler J, Zufall F, Franke C, Hatt H.
    J Comp Physiol A; 1992 Feb 12; 170(2):145-52. PubMed ID: 1374798
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Dopamine modulates synaptic transmission between rat olfactory bulb neurons in culture.
    Davila NG, Blakemore LJ, Trombley PQ.
    J Neurophysiol; 2003 Jul 12; 90(1):395-404. PubMed ID: 12611989
    [Abstract] [Full Text] [Related]

  • 9. Opposing inward and outward conductances regulate rebound discharges in olfactory mitral cells.
    Balu R, Strowbridge BW.
    J Neurophysiol; 2007 Mar 12; 97(3):1959-68. PubMed ID: 17151219
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain.
    Han SH, Murchison D, Griffith WH.
    Brain Res Mol Brain Res; 2005 Apr 04; 134(2):226-38. PubMed ID: 15836920
    [Abstract] [Full Text] [Related]

  • 13. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
    Balu R, Larimer P, Strowbridge BW.
    J Neurophysiol; 2004 Aug 04; 92(2):743-53. PubMed ID: 15277594
    [Abstract] [Full Text] [Related]

  • 14. Apical and basal neurones isolated from the mouse vomeronasal organ differ for voltage-dependent currents.
    Fieni F, Ghiaroni V, Tirindelli R, Pietra P, Bigiani A.
    J Physiol; 2003 Oct 15; 552(Pt 2):425-36. PubMed ID: 14561826
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Persistent sodium and calcium currents in rat hypoglossal motoneurons.
    Powers RK, Binder MD.
    J Neurophysiol; 2003 Jan 15; 89(1):615-24. PubMed ID: 12522206
    [Abstract] [Full Text] [Related]

  • 18. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats.
    Tazerart S, Viemari JC, Darbon P, Vinay L, Brocard F.
    J Neurophysiol; 2007 Aug 15; 98(2):613-28. PubMed ID: 17567773
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Tetrodotoxin-sensitive and -resistant Na+ channel currents in subsets of small sensory neurons of rats.
    Wu ZZ, Pan HL.
    Brain Res; 2004 Dec 17; 1029(2):251-8. PubMed ID: 15542080
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.