These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


383 related items for PubMed ID: 9102460

  • 1. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals.
    Gösseringer R, Küster E, Galinier A, Deutscher J, Hillen W.
    J Mol Biol; 1997 Mar 07; 266(4):665-76. PubMed ID: 9102460
    [Abstract] [Full Text] [Related]

  • 2. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate.
    Schumacher MA, Seidel G, Hillen W, Brennan RG.
    J Mol Biol; 2007 May 11; 368(4):1042-50. PubMed ID: 17376479
    [Abstract] [Full Text] [Related]

  • 3. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A, Deutscher J, Martin-Verstraete I.
    J Mol Biol; 1999 Feb 19; 286(2):307-14. PubMed ID: 9973552
    [Abstract] [Full Text] [Related]

  • 4. Quantification of the influence of HPrSer46P on CcpA-cre interaction.
    Aung-Hilbrich LM, Seidel G, Wagner A, Hillen W.
    J Mol Biol; 2002 May 24; 319(1):77-85. PubMed ID: 12051938
    [Abstract] [Full Text] [Related]

  • 5. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I, Brückner R.
    J Mol Microbiol Biotechnol; 2007 May 24; 12(1-2):114-20. PubMed ID: 17183218
    [Abstract] [Full Text] [Related]

  • 6. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V, Boël G, Deutscher J.
    J Mol Microbiol Biotechnol; 2001 Jul 24; 3(3):433-8. PubMed ID: 11361075
    [Abstract] [Full Text] [Related]

  • 7. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P.
    Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG.
    Cell; 2004 Sep 17; 118(6):731-41. PubMed ID: 15369672
    [Abstract] [Full Text] [Related]

  • 8. CcpA-independent carbon catabolite repression in Bacillus subtilis.
    Dahl MK.
    J Mol Microbiol Biotechnol; 2002 May 17; 4(3):315-21. PubMed ID: 11931564
    [Abstract] [Full Text] [Related]

  • 9. The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis.
    Müller W, Horstmann N, Hillen W, Sticht H.
    FEBS J; 2006 Mar 17; 273(6):1251-61. PubMed ID: 16519689
    [Abstract] [Full Text] [Related]

  • 10. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI.
    Wagner A, Küster-Schöck E, Hillen W.
    J Mol Microbiol Biotechnol; 2000 Oct 17; 2(4):587-92. PubMed ID: 11075936
    [Abstract] [Full Text] [Related]

  • 11. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.
    Seidel G, Diel M, Fuchsbauer N, Hillen W.
    FEBS J; 2005 May 17; 272(10):2566-77. PubMed ID: 15885105
    [Abstract] [Full Text] [Related]

  • 12. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y, Miwa Y, Galinier A, Deutscher J.
    Mol Microbiol; 1995 Sep 17; 17(5):953-60. PubMed ID: 8596444
    [Abstract] [Full Text] [Related]

  • 13. Residues His-15 and Arg-17 of HPr participate differently in catabolite signal processing via CcpA.
    Horstmann N, Seidel G, Aung-Hilbrich LM, Hillen W.
    J Biol Chem; 2007 Jan 12; 282(2):1175-82. PubMed ID: 17085448
    [Abstract] [Full Text] [Related]

  • 14. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403.
    Kowalczyk M, Borcz B, Płochocka D, Bardowski J.
    Acta Biochim Pol; 2007 Jan 12; 54(1):71-8. PubMed ID: 17356715
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. CcpA-mediated repression of Clostridium difficile toxin gene expression.
    Antunes A, Martin-Verstraete I, Dupuy B.
    Mol Microbiol; 2011 Feb 12; 79(4):882-99. PubMed ID: 21299645
    [Abstract] [Full Text] [Related]

  • 19. Catabolite repression of the citST two-component system in Bacillus subtilis.
    Repizo GD, Blancato VS, Sender PD, Lolkema J, Magni C.
    FEMS Microbiol Lett; 2006 Jul 12; 260(2):224-31. PubMed ID: 16842348
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.