These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
436 related items for PubMed ID: 9105709
1. Sources of Ca2+ in relation to generation of acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Br J Pharmacol; 1997 Apr; 120(7):1328-34. PubMed ID: 9105709 [Abstract] [Full Text] [Related]
2. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
3. Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries. McSherry IN, Spitaler MM, Takano H, Dora KA. Cell Calcium; 2005 Jul; 38(1):23-33. PubMed ID: 15907999 [Abstract] [Full Text] [Related]
4. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries. Chataigneau T, Félétou M, Thollon C, Villeneuve N, Vilaine JP, Duhault J, Vanhoutte PM. Br J Pharmacol; 1998 Mar; 123(5):968-74. PubMed ID: 9535027 [Abstract] [Full Text] [Related]
5. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y, Otsuka A, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [Abstract] [Full Text] [Related]
6. Relationship between NaF- and thapsigargin-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Fukao M, Hattori Y, Sato A, Liu MY, Watanabe H, Kim TQ, Kanno M. Br J Pharmacol; 1999 Apr; 126(7):1567-74. PubMed ID: 10323588 [Abstract] [Full Text] [Related]
7. Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-dependent hyperpolarization by acetylcholine in rat isolated mesenteric artery. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Br J Pharmacol; 1997 Feb; 120(3):439-46. PubMed ID: 9031747 [Abstract] [Full Text] [Related]
8. Cilostamide produces hyperpolarization associated with K(ATP) channel activation, but does not augment endothelium-derived hyperpolarization in rat mesenteric arteries. Kansui Y, Goto K, Fujii K, Oniki H, Matsumura K, Iida M. Clin Exp Pharmacol Physiol; 2009 Jul; 36(7):729-33. PubMed ID: 19207721 [Abstract] [Full Text] [Related]
9. Effects of insulin on the acetylcholine-induced hyperpolarization in the guinea pig mesenteric arterioles. Imaeda K, Okayama N, Okouchi M, Omi H, Kato T, Akao M, Imai S, Uranishi H, Takeuchi Y, Ohara H, Fukutomi T, Joh T, Itoh M. J Diabetes Complications; 2004 Jul; 18(6):356-62. PubMed ID: 15531186 [Abstract] [Full Text] [Related]
10. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H, Waldron GJ, Cole WC, Triggle CR. Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [Abstract] [Full Text] [Related]
11. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D, Simonsen U, Hernández M, García-Sacristán A. Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [Abstract] [Full Text] [Related]
12. Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels. Bolz SS, de Wit C, Pohl U. Br J Pharmacol; 1999 Sep; 128(1):124-34. PubMed ID: 10498843 [Abstract] [Full Text] [Related]
13. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery. Yamakawa N, Ohhashi M, Waga S, Itoh T. Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909 [Abstract] [Full Text] [Related]
14. Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. Crane GJ, Gallagher N, Dora KA, Garland CJ. J Physiol; 2003 Nov 15; 553(Pt 1):183-9. PubMed ID: 14555724 [Abstract] [Full Text] [Related]
15. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed. McCulloch AI, Bottrill FE, Randall MD, Hiley CR. Br J Pharmacol; 1997 Apr 15; 120(8):1431-8. PubMed ID: 9113362 [Abstract] [Full Text] [Related]
16. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Br J Pharmacol; 1997 Aug 15; 121(7):1383-91. PubMed ID: 9257918 [Abstract] [Full Text] [Related]
17. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. Adeagbo AS, Triggle CR. J Cardiovasc Pharmacol; 1993 Mar 15; 21(3):423-9. PubMed ID: 7681503 [Abstract] [Full Text] [Related]
18. Thapsigargin- and cyclopiazonic acid-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Br J Pharmacol; 1995 Jul 15; 115(6):987-92. PubMed ID: 7582531 [Abstract] [Full Text] [Related]
19. Central role of intracellular calcium stores in acute flow- and agonist-evoked endothelial nitric oxide release. Hutcheson IR, Griffith TM. Br J Pharmacol; 1997 Sep 15; 122(1):117-25. PubMed ID: 9298537 [Abstract] [Full Text] [Related]
20. Dihydropyridines inhibit acetylcholine-induced hyperpolarization in cochlear artery via blockade of intermediate-conductance calcium-activated potassium channels. Jiang ZG, Shi XR, Guan BC, Zhao H, Yang YQ. J Pharmacol Exp Ther; 2007 Feb 15; 320(2):544-51. PubMed ID: 17082310 [Abstract] [Full Text] [Related] Page: [Next] [New Search]