These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 9105923

  • 1. Chlorine inactivation of fungal spores on cereal grains.
    Andrews S, Pardoel D, Harun A, Treloar T.
    Int J Food Microbiol; 1997 Apr 01; 35(2):153-62. PubMed ID: 9105923
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of surface disinfection procedures for enumerating fungi in foods: a collaborative study.
    Andrews S.
    Int J Food Microbiol; 1996 Apr 01; 29(2-3):177-84. PubMed ID: 8796420
    [Abstract] [Full Text] [Related]

  • 3. Free chlorine inactivation of fungi in drinking water sources.
    Pereira VJ, Marques R, Marques M, Benoliel MJ, Barreto Crespo MT.
    Water Res; 2013 Feb 01; 47(2):517-23. PubMed ID: 23164218
    [Abstract] [Full Text] [Related]

  • 4. Impact of the physiological state of fungal spores on their inactivation by active chlorine and hydrogen peroxide.
    Visconti V, Rigalma K, Coton E, Dantigny P.
    Food Microbiol; 2021 Dec 01; 100():103850. PubMed ID: 34416954
    [Abstract] [Full Text] [Related]

  • 5. Chlorine demand and inactivation of fungal propagules.
    Rosenzweig WD, Minnigh HA, Pipes WO.
    Appl Environ Microbiol; 1983 Jan 01; 45(1):182-6. PubMed ID: 6824316
    [Abstract] [Full Text] [Related]

  • 6. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms.
    Wen G, Xu X, Huang T, Zhu H, Ma J.
    Water Res; 2017 Nov 15; 125():132-140. PubMed ID: 28843153
    [Abstract] [Full Text] [Related]

  • 7. [Inactivation Efficiency and Mechanism of Three Dominant Fungal Spores in Drinking Groundwater by Chlorine].
    Wen G, Zhu H, Huang TL, Zhao JC, Ren W, Xu XQ.
    Huan Jing Ke Xue; 2016 Nov 08; 37(11):4228-4234. PubMed ID: 29964674
    [Abstract] [Full Text] [Related]

  • 8. Photodynamic inactivation of mold fungi spores by newly developed charged corroles.
    Preuß A, Saltsman I, Mahammed A, Pfitzner M, Goldberg I, Gross Z, Röder B.
    J Photochem Photobiol B; 2014 Apr 05; 133():39-46. PubMed ID: 24675635
    [Abstract] [Full Text] [Related]

  • 9. The protective role and mechanism of melanin for Aspergillus niger and Aspergillus flavus against chlorine-based disinfectants.
    Xu X, Cao R, Li K, Wan Q, Wu G, Lin Y, Huang T, Wen G.
    Water Res; 2022 Sep 01; 223():119039. PubMed ID: 36084430
    [Abstract] [Full Text] [Related]

  • 10. Development of fungal spore staining methods for flow cytometric quantification and their application in chlorine-based disinfection.
    Wen G, Cao R, Wan Q, Tan L, Xu X, Wang J, Huang T.
    Chemosphere; 2020 Mar 01; 243():125453. PubMed ID: 31995893
    [Abstract] [Full Text] [Related]

  • 11. Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms.
    Liang Z, Xu X, Cao R, Wan Q, Xu H, Wang J, Lin Y, Huang T, Wen G.
    J Hazard Mater; 2021 Oct 15; 420():126610. PubMed ID: 34271445
    [Abstract] [Full Text] [Related]

  • 12. Fungicidal effect of 15 disinfectants against 25 fungal contaminants commonly found in bread and cheese manufacturing.
    Bundgaard-Nielsen K, Nielsen PV.
    J Food Prot; 1996 Mar 15; 59(3):268-75. PubMed ID: 10463445
    [Abstract] [Full Text] [Related]

  • 13. Composition of the fungal flora of four cereal grains in Saudi Arabia.
    Abdel-Hafez SI.
    Mycopathologia; 1984 Mar 15; 85(1-2):53-7. PubMed ID: 6727980
    [Abstract] [Full Text] [Related]

  • 14. Mites and fungi in heavily infested stores in the Czech Republic.
    Hubert J, Stejskal V, Munzbergová Z, Kubátová A, Vánová M, Zd'árková E.
    J Econ Entomol; 2004 Dec 15; 97(6):2144-53. PubMed ID: 15666776
    [Abstract] [Full Text] [Related]

  • 15. The aggregation of Aspergillus spores and the impact on their inactivation by chlorine-based disinfectants.
    Zhang H, Xu X, Tan L, Liang Z, Cao R, Wan Q, Xu H, Wang J, Huang T, Wen G.
    Water Res; 2021 Oct 01; 204():117629. PubMed ID: 34509870
    [Abstract] [Full Text] [Related]

  • 16. Enumeration of fungi in barley.
    Rabie CJ, Lübben A, Marais GJ, Jansen van Vuuren H.
    Int J Food Microbiol; 1997 Apr 01; 35(2):117-27. PubMed ID: 9105919
    [Abstract] [Full Text] [Related]

  • 17. Inactivation of food spoilage fungi by ultra violet (UVC) irradiation.
    Begum M, Hocking AD, Miskelly D.
    Int J Food Microbiol; 2009 Jan 31; 129(1):74-7. PubMed ID: 19059664
    [Abstract] [Full Text] [Related]

  • 18. Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum.
    Jin Z, Wang YC.
    Food Res Int; 2024 Aug 31; 190():114550. PubMed ID: 38945594
    [Abstract] [Full Text] [Related]

  • 19. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water.
    Ma X, Bibby K.
    Water Res; 2017 Sep 01; 120():265-271. PubMed ID: 28501787
    [Abstract] [Full Text] [Related]

  • 20. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water.
    Sisti M, Brandi G, De Santi M, Rinaldi L, Schiavano GF.
    J Water Health; 2012 Mar 01; 10(1):11-9. PubMed ID: 22361698
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.