These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
363 related items for PubMed ID: 9106463
1. Inhibitory effects evoked from both the lateral and ventrolateral periaqueductal grey are selective for the nociceptive responses of rat dorsal horn neurones. Waters AJ, Lumb BM. Brain Res; 1997 Mar 28; 752(1-2):239-49. PubMed ID: 9106463 [Abstract] [Full Text] [Related]
2. Inhibitory effects evoked from the rostral ventrolateral medulla are selective for the nociceptive responses of spinal dorsal horn neurons. Hudson PM, Semenenko FM, Lumb BM. Neuroscience; 2000 Mar 28; 99(3):541-7. PubMed ID: 11029545 [Abstract] [Full Text] [Related]
3. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. Gebhart GF, Sandkühler J, Thalhammer JG, Zimmermann M. J Neurophysiol; 1983 Dec 28; 50(6):1433-45. PubMed ID: 6663336 [Abstract] [Full Text] [Related]
4. Laminar organization of spinal dorsal horn neurones activated by C- vs. A-heat nociceptors and their descending control from the periaqueductal grey in the rat. Koutsikou S, Parry DM, MacMillan FM, Lumb BM. Eur J Neurosci; 2007 Aug 28; 26(4):943-52. PubMed ID: 17714188 [Abstract] [Full Text] [Related]
5. Inhibitory effects evoked from the anterior hypothalamus are selective for the nociceptive responses of dorsal horn neurons with high- and low-threshold inputs. Workman BJ, Lumb BM. J Neurophysiol; 1997 May 28; 77(5):2831-5. PubMed ID: 9163397 [Abstract] [Full Text] [Related]
6. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. Gebhart GF, Sandkühler J, Thalhammer JG, Zimmermann M. J Neurophysiol; 1984 Jan 28; 51(1):75-89. PubMed ID: 6693935 [Abstract] [Full Text] [Related]
7. Midbrain influences on ventrolateral medullo-spinal neurones in the rat. Lovick TA. Exp Brain Res; 1992 Jan 28; 90(1):147-52. PubMed ID: 1521603 [Abstract] [Full Text] [Related]
8. Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat. Snowball RK, Dampney RA, Lumb BM. Exp Physiol; 1997 May 28; 82(3):485-500. PubMed ID: 9179568 [Abstract] [Full Text] [Related]
9. Inhibitory modulation of the cardiovascular defence response by the ventrolateral periaqueductal grey matter in rats. Lovick TA. Exp Brain Res; 1992 May 28; 89(1):133-9. PubMed ID: 1601091 [Abstract] [Full Text] [Related]
10. The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. Peng YB, Lin Q, Willis WD. J Pharmacol Exp Ther; 1996 Jan 28; 276(1):116-24. PubMed ID: 8558419 [Abstract] [Full Text] [Related]
11. Effects of electrical stimulation of thalamic nucleus submedius and periaqueductal gray on the visceral nociceptive responses of spinal dorsal horn neurons in the rat. Okada K, Murase K, Kawakita K. Brain Res; 1999 Jul 10; 834(1-2):112-21. PubMed ID: 10407099 [Abstract] [Full Text] [Related]
12. Periaqueductal grey cyclooxygenase-dependent facilitation of C-nociceptive drive and encoding in dorsal horn neurons in the rat. Leith JL, Wilson AW, You HJ, Lumb BM, Donaldson LF. J Physiol; 2014 Nov 15; 592(22):5093-107. PubMed ID: 25239460 [Abstract] [Full Text] [Related]
13. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. Lin Q, Peng YB, Willis WD. J Neurophysiol; 1996 Jan 15; 75(1):109-23. PubMed ID: 8822545 [Abstract] [Full Text] [Related]
14. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons. Dostrovsky JO, Shah Y, Gray BG. J Neurophysiol; 1983 Apr 15; 49(4):948-60. PubMed ID: 6854363 [Abstract] [Full Text] [Related]
15. Inhibition of spinal nociceptive neurons by excitation of cell bodies or fibers of passage at various brainstem sites in the cat. Sandkühler J, Helmchen C, Fu QG, Zimmermann M. Neurosci Lett; 1988 Oct 31; 93(1):67-72. PubMed ID: 2905438 [Abstract] [Full Text] [Related]
16. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Pertovaara A, Kontinen VK, Kalso EA. Exp Neurol; 1997 Oct 31; 147(2):428-36. PubMed ID: 9344567 [Abstract] [Full Text] [Related]
17. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. Budai D, Fields HL. J Neurophysiol; 1998 Feb 31; 79(2):677-87. PubMed ID: 9463431 [Abstract] [Full Text] [Related]
18. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons. Gray BG, Dostrovsky JO. J Neurophysiol; 1983 Apr 31; 49(4):932-47. PubMed ID: 6854362 [Abstract] [Full Text] [Related]
20. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. Sandkühler J, Fu QG, Zimmermann M. J Neurophysiol; 1987 Aug 09; 58(2):327-41. PubMed ID: 3655871 [Abstract] [Full Text] [Related] Page: [Next] [New Search]