These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
262 related items for PubMed ID: 9106501
1. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, on iron- and copper-dependent oxidation of human low-density lipoprotein. Lynch SM, Frei B. Biochim Biophys Acta; 1997 Apr 01; 1345(2):215-21. PubMed ID: 9106501 [Abstract] [Full Text] [Related]
2. Plasma thiols inhibit hemin-dependent oxidation of human low-density lipoprotein. Lynch SM, Campione AL, Moore MK. Biochim Biophys Acta; 2000 May 06; 1485(1):11-22. PubMed ID: 10802245 [Abstract] [Full Text] [Related]
3. Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms. Heinecke JW, Kawamura M, Suzuki L, Chait A. J Lipid Res; 1993 Dec 06; 34(12):2051-61. PubMed ID: 8301226 [Abstract] [Full Text] [Related]
4. Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine. Pfanzagl B, Tribl F, Koller E, Möslinger T. Atherosclerosis; 2003 May 06; 168(1):39-48. PubMed ID: 12732385 [Abstract] [Full Text] [Related]
5. Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation. Lodge JK, Traber MG, Packer L. Free Radic Biol Med; 1998 Aug 06; 25(3):287-97. PubMed ID: 9680174 [Abstract] [Full Text] [Related]
6. Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. Lynch SM, Frei B. J Biol Chem; 1995 Mar 10; 270(10):5158-63. PubMed ID: 7890625 [Abstract] [Full Text] [Related]
7. Copper-mediated LDL oxidation by homocysteine and related compounds depends largely on copper ligation. Nakano E, Williamson MP, Williams NH, Powers HJ. Biochim Biophys Acta; 2004 Jan 20; 1688(1):33-42. PubMed ID: 14732479 [Abstract] [Full Text] [Related]
8. Cys-His proteases are among the wired proteins of the cell. Lockwood TD. Arch Biochem Biophys; 2004 Dec 01; 432(1):12-24. PubMed ID: 15519292 [Abstract] [Full Text] [Related]
10. The influence of medium components on Cu(2+)-dependent oxidation of low-density lipoproteins and its sensitivity to superoxide dismutase. Thomas CE. Biochim Biophys Acta; 1992 Sep 22; 1128(1):50-7. PubMed ID: 1390878 [Abstract] [Full Text] [Related]
12. Factors affecting S-homocysteinylation of LDL apoprotein B. Zinellu A, Zinellu E, Sotgia S, Formato M, Cherchi GM, Deiana L, Carru C. Clin Chem; 2006 Nov 22; 52(11):2054-9. PubMed ID: 16990421 [Abstract] [Full Text] [Related]
13. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Graham A, Wood JL, O'Leary VJ, Stone D. Free Radic Res; 1994 Oct 22; 21(5):295-308. PubMed ID: 7842139 [Abstract] [Full Text] [Related]
14. [Thiol peroxidase activities in rat blood plasma determined with hydrogen peroxide and 5,5`-dithio-bis(2-nitrobenzoic acid)]. Razygraev AV, Taborskaya KI, Petrosyan MA, Tumasova ZhN. Biomed Khim; 2016 May 22; 62(4):431-8. PubMed ID: 27562997 [Abstract] [Full Text] [Related]
15. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. Lynch SM, Frei B. J Lipid Res; 1993 Oct 22; 34(10):1745-53. PubMed ID: 8245725 [Abstract] [Full Text] [Related]
17. Human (THP-1) macrophages oxidize LDL by a thiol-dependent mechanism. Graham A, Wood JL, O'Leary VJ, Stone D. Free Radic Res; 1996 Aug 22; 25(2):181-92. PubMed ID: 8885336 [Abstract] [Full Text] [Related]
18. Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation. Sengupta S, Wehbe C, Majors AK, Ketterer ME, DiBello PM, Jacobsen DW. J Biol Chem; 2001 Dec 14; 276(50):46896-904. PubMed ID: 11592966 [Abstract] [Full Text] [Related]