These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
409 related items for PubMed ID: 9114234
1. Medial olivocochlear efferent system in humans studied with amplitude-modulated tones. Maison S, Micheyl C, Collet L. J Neurophysiol; 1997 Apr; 77(4):1759-68. PubMed ID: 9114234 [Abstract] [Full Text] [Related]
2. Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. Veuillet E, Collet L, Duclaux R. J Neurophysiol; 1991 Mar; 65(3):724-35. PubMed ID: 2051201 [Abstract] [Full Text] [Related]
3. Contralateral acoustic suppression of transient evoked otoacoustic emissions--activation of the medial olivocochlear system. Komazec Z, Filipović D, Milosević D. Med Pregl; 2003 Mar; 56(3-4):124-30. PubMed ID: 12899075 [Abstract] [Full Text] [Related]
4. Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Maison S, Micheyl C, Andéol G, Gallégo S, Collet L. Hear Res; 2000 Feb; 140(1-2):111-25. PubMed ID: 10675639 [Abstract] [Full Text] [Related]
5. Medial olivocochlear system stabilizes active cochlear micromechanical properties in humans. Maison S, Micheyl C, Chays A, Collet L. Hear Res; 1997 Nov; 113(1-2):89-98. PubMed ID: 9387988 [Abstract] [Full Text] [Related]
6. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects. Williams EA, Brookes GB, Prasher DK. Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191 [Abstract] [Full Text] [Related]
7. [Spontaneous otoacoustic emissions and efferent control of cochlea]. Xu J, Liu C, Guo L, Lian N, Liu B. Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):436-40. PubMed ID: 12761959 [Abstract] [Full Text] [Related]
8. Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions. van Zyl A, Swanepoel D, Hall JW. Hear Res; 2009 Aug; 254(1-2):77-81. PubMed ID: 19401226 [Abstract] [Full Text] [Related]
9. [Increased amplitude of distortion product emissions in the human caused by contralateral low intensity acoustic stimulation]. Nieschalk M, Beneking R, Stoll W. HNO; 1997 May; 45(5):378-84. PubMed ID: 9265021 [Abstract] [Full Text] [Related]
10. Frequency specificity and left-ear advantage of medial olivocochlear efferent modulation: a study based on stimulus frequency otoacoustic emission. Xing D, Gong Q. Neuroreport; 2017 Sep 06; 28(13):775-778. PubMed ID: 28538522 [Abstract] [Full Text] [Related]
12. Medial olivocochlear suppression in musicians versus non-musicians. Bulut E, Öztürk G, Taş M, Türkmen MT, Gülmez ZD, Öztürk L. Physiol Int; 2019 Jun 01; 106(2):151-157. PubMed ID: 31262207 [Abstract] [Full Text] [Related]
16. Contralateral frequency-modulated tones suppress transient-evoked otoacoustic emissions in humans. Maison S, Micheyl C, Collet L. Hear Res; 1998 Mar 01; 117(1-2):114-8. PubMed ID: 9557982 [Abstract] [Full Text] [Related]
17. Evoked otoacoustic emissions and auditory selective attention. Michie PT, LePage EL, Solowij N, Haller M, Terry L. Hear Res; 1996 Sep 01; 98(1-2):54-67. PubMed ID: 8880181 [Abstract] [Full Text] [Related]
18. Involvement of the olivocochlear bundle in the detection of tones in noise. Micheyl C, Collet L. J Acoust Soc Am; 1996 Mar 01; 99(3):1604-10. PubMed ID: 8819856 [Abstract] [Full Text] [Related]