These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


441 related items for PubMed ID: 9114248

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. II. Integration Of sensory inputs in motor neurons.
    Le Ray D, Clarac F, Cattaert D.
    J Neurophysiol; 1997 Dec; 78(6):3144-53. PubMed ID: 9405534
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Inhibitory component of the resistance reflex in the locomotor network of the crayfish.
    Le Bon-Jego M, Cattaert D.
    J Neurophysiol; 2002 Nov; 88(5):2575-88. PubMed ID: 12424295
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Reflex actions of one proprioceptor on the motoneurones of a muscle receptor and their central modulation in the shore crab.
    Head SI, Bush BM.
    J Physiol; 1991 Jun; 437():49-62. PubMed ID: 1890645
    [Abstract] [Full Text] [Related]

  • 9. Monosynaptic Interjoint Reflexes and their Central Modulation During Fictive Locomotion in Crayfish.
    El Manira A, DiCaprio RA, Cattaert D, Clarac F.
    Eur J Neurosci; 1991 Jun; 3(12):1219-1231. PubMed ID: 12106221
    [Abstract] [Full Text] [Related]

  • 10. Octopamine induces steady-state reflex reversal in crayfish thoracic ganglia.
    Skorupski P.
    J Neurophysiol; 1996 Jul; 76(1):93-108. PubMed ID: 8836212
    [Abstract] [Full Text] [Related]

  • 11. The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop.
    Bacqué-Cazenave J, Chung B, Cofer DW, Cattaert D, Edwards DH.
    J Neurophysiol; 2015 Mar 15; 113(6):1772-83. PubMed ID: 25552643
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia.
    Sillar KT, Skorupski P.
    J Neurophysiol; 1986 Apr 15; 55(4):678-88. PubMed ID: 3701400
    [Abstract] [Full Text] [Related]

  • 16. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.
    Le Ray D, Combes D, Déjean C, Cattaert D.
    J Neurophysiol; 2005 Aug 15; 94(2):1013-27. PubMed ID: 15829591
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus.
    Skorupski P, Sillar KT.
    J Neurophysiol; 1986 Apr 15; 55(4):689-95. PubMed ID: 3701401
    [Abstract] [Full Text] [Related]

  • 19. Control of motor activity in crayfish by the steroid hormone 20-hydroxyecdysone via motoneuron excitability and sensory-motor integration.
    Bacqué-Cazenave J, Bouvet F, Fossat P, Cattaert D, Delbecque JP.
    J Exp Biol; 2013 May 15; 216(Pt 10):1808-18. PubMed ID: 23393273
    [Abstract] [Full Text] [Related]

  • 20. Force dependent response reversal mediated by low- and high-threshold afferents from the same mechanoreceptor in a crayfish leg.
    Leibrock CS, Marchand AR, Barnes WJ.
    J Neurophysiol; 1996 Sep 15; 76(3):1540-4. PubMed ID: 8890273
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.