These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 9115995
1. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme. Goldman R, Tsyrlov IB, Grogan J, Kagan VE. Biochemistry; 1997 Mar 18; 36(11):3186-92. PubMed ID: 9115995 [Abstract] [Full Text] [Related]
2. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants. Tyurina YY, Tyurin VA, Yalowich JC, Quinn PJ, Claycamp HG, Schor NF, Pitt BR, Kagan VE. Toxicol Appl Pharmacol; 1995 Apr 18; 131(2):277-88. PubMed ID: 7716769 [Abstract] [Full Text] [Related]
10. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems. Kagan VE, Yalowich JC, Day BW, Goldman R, Gantchev TG, Stoyanovsky DA. Biochemistry; 1994 Aug 16; 33(32):9651-60. PubMed ID: 8068642 [Abstract] [Full Text] [Related]
11. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals. Tyurin VA, Carta G, Tyurina YY, Banni S, Day BW, Corongiu FP, Kagan VE. Lipids; 1997 Feb 16; 32(2):131-42. PubMed ID: 9075202 [Abstract] [Full Text] [Related]
12. Inhibition of Na+/K(+)-ATPase by phenoxyl radicals of etoposide (VP-16): role of sulfhydryls oxidation. Kurella EG, Osipov AN, Goldman R, Boldyrev AA, Kagan VE. Biochim Biophys Acta; 1995 Nov 21; 1232(1-2):52-8. PubMed ID: 7495837 [Abstract] [Full Text] [Related]
13. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ, Scrutton NS, Munro AW. Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197 [Abstract] [Full Text] [Related]
15. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase. Zhang H, Gruenke L, Saribas AS, Im SC, Shen AL, Kasper CB, Waskell L. Biochemistry; 2003 Jun 10; 42(22):6804-13. PubMed ID: 12779335 [Abstract] [Full Text] [Related]
16. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar. Winston GW, Church DF, Cueto R, Pryor WA. Arch Biochem Biophys; 1993 Aug 01; 304(2):371-8. PubMed ID: 8394056 [Abstract] [Full Text] [Related]
17. Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. Shvedova AA, Kommineni C, Jeffries BA, Castranova V, Tyurina YY, Tyurin VA, Serbinova EA, Fabisiak JP, Kagan VE. J Invest Dermatol; 2000 Feb 01; 114(2):354-64. PubMed ID: 10651998 [Abstract] [Full Text] [Related]
18. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Knight K, Scrutton NS. Biochem J; 2002 Oct 01; 367(Pt 1):19-30. PubMed ID: 12079493 [Abstract] [Full Text] [Related]
19. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase. Yamamoto K, Kimura S, Shiro Y, Iyanagi T. Arch Biochem Biophys; 2005 Aug 01; 440(1):65-78. PubMed ID: 16009330 [Abstract] [Full Text] [Related]
20. Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. O'Donnell VB, Smith GC, Jones OT. Mol Pharmacol; 1994 Oct 01; 46(4):778-85. PubMed ID: 7969060 [Abstract] [Full Text] [Related] Page: [Next] [New Search]