These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
84 related items for PubMed ID: 9116168
1. Molecular modelling of CCK-A receptors. Van Der Bent A, Ijzerman AP, Soudijn W. Drug Des Discov; 1994 Nov; 12(2):129-48. PubMed ID: 9116168 [Abstract] [Full Text] [Related]
2. Arginine 197 of the cholecystokinin-A receptor binding site interacts with the sulfate of the peptide agonist cholecystokinin. Gigoux V, Maigret B, Escrieut C, Silvente-Poirot S, Bouisson M, Fehrentz JA, Moroder L, Gully D, Martinez J, Vaysse N, Fourmy AD. Protein Sci; 1999 Nov; 8(11):2347-54. PubMed ID: 10595537 [Abstract] [Full Text] [Related]
3. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. Axe FU, Bembenek SD, Szalma S. J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444 [Abstract] [Full Text] [Related]
4. Peptide/benzodiazepine hybrids as ligands of CCK(A) and CCK(B) receptors. Escherich A, Lutz J, Escrieut C, Fourmy D, van Neuren AS, Müller G, Schafferhans A, Klebe G, Moroder L. Biopolymers; 2006 May; 56(2):55-76. PubMed ID: 11592053 [Abstract] [Full Text] [Related]
5. Mapping of ligand binding sites of the cholecystokinin-B/gastrin receptor with lipo-gastrin peptides and molecular modeling. Lutz J, Romano-Götsch R, Escrieut C, Fourmy D, Mathä B, Müller G, Kessler H, Moroder L. Biopolymers; 1997 Jun; 41(7):799-817. PubMed ID: 9128441 [Abstract] [Full Text] [Related]
6. Measurement of intermolecular distances for the natural agonist Peptide docked at the cholecystokinin receptor expressed in situ using fluorescence resonance energy transfer. Harikumar KG, Pinon DI, Wessels WS, Dawson ES, Lybrand TP, Prendergast FG, Miller LJ. Mol Pharmacol; 2004 Jan; 65(1):28-35. PubMed ID: 14722234 [Abstract] [Full Text] [Related]
7. Conformational and molecular modeling studies of sulfated cholecystokinin-15. Giragossian C, Stone S, Papini AM, Moroder L, Mierke DF. Biochem Biophys Res Commun; 2002 May 10; 293(3):1053-9. PubMed ID: 12051766 [Abstract] [Full Text] [Related]
8. Intermolecular interactions between peptidic and nonpeptidic agonists and the third extracellular loop of the cholecystokinin 1 receptor. Giragossian C, Sugg EE, Szewczyk JR, Mierke DF. J Med Chem; 2003 Jul 31; 46(16):3476-82. PubMed ID: 12877585 [Abstract] [Full Text] [Related]
9. Key differences in molecular complexes of the cholecystokinin receptor with structurally related peptide agonist, partial agonist, and antagonist. Arlander SJ, Dong M, Ding XQ, Pinon DI, Miller LJ. Mol Pharmacol; 2004 Sep 31; 66(3):545-52. PubMed ID: 15322246 [Abstract] [Full Text] [Related]
10. Homology model of dihydropyridine receptor: implications for L-type Ca(2+) channel modulation by agonists and antagonists. Zhorov BS, Folkman EV, Ananthanarayanan VS. Arch Biochem Biophys; 2001 Sep 01; 393(1):22-41. PubMed ID: 11516158 [Abstract] [Full Text] [Related]
11. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands. Moretti L, Pentikäinen OT, Settimo L, Johnson MS. J Struct Biol; 2004 Mar 01; 145(3):205-15. PubMed ID: 14960371 [Abstract] [Full Text] [Related]
12. Insights into the binding and activation sites of the receptors for cholecystokinin and gastrin. Foucaud M, Archer-Lahlou E, Marco E, Tikhonova IG, Maigret B, Escrieut C, Langer I, Fourmy D. Regul Pept; 2008 Jan 10; 145(1-3):17-23. PubMed ID: 17961734 [Abstract] [Full Text] [Related]
13. Fluorescence studies on the binding between 1-47 fragment of cholecystokinin receptor CCK(A)-R(1-47) and nonsulfated cholecystokinin octapeptide CCK8. Ragone R, De Luca S, Tesauro D, Pedone C, Morelli G. Biopolymers; 2008 Jan 10; 56(1):47-53. PubMed ID: 11582577 [Abstract] [Full Text] [Related]
14. Direct identification of the agonist binding site in the human brain cholecystokininB receptor. Anders J, Blüggel M, Meyer HE, Kühne R, ter Laak AM, Kojro E, Fahrenholz F. Biochemistry; 1999 May 11; 38(19):6043-55. PubMed ID: 10320330 [Abstract] [Full Text] [Related]
15. Binding sites and transduction process of the cholecystokininB receptor: involvement of highly conserved aromatic residues of the transmembrane domains evidenced by site-directed mutagenesis. Jagerschmidt A, Guillaume N, Roques BP, Noble F. Mol Pharmacol; 1998 May 11; 53(5):878-85. PubMed ID: 9584214 [Abstract] [Full Text] [Related]
16. Three-dimensional models of glutamate receptors. Sutcliffe MJ, Smeeton AH, Wo ZG, Oswald RE. Faraday Discuss; 1998 May 11; (111):259-72; discussion 331-43. PubMed ID: 10822613 [Abstract] [Full Text] [Related]
17. Model of the 3-D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport. Dwyer DS. Proteins; 2001 Mar 01; 42(4):531-41. PubMed ID: 11170207 [Abstract] [Full Text] [Related]
18. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Kloiber K, Weiskirchen R, Kräutler B, Bister K, Konrat R. J Mol Biol; 1999 Oct 01; 292(4):893-908. PubMed ID: 10525413 [Abstract] [Full Text] [Related]
19. Molecular simulation of dynorphin A-(1-10) binding to extracellular loop 2 of the kappa-opioid receptor. A model for receptor activation. Paterlini G, Portoghese PS, Ferguson DM. J Med Chem; 1997 Sep 26; 40(20):3254-62. PubMed ID: 9379445 [Abstract] [Full Text] [Related]
20. Further evidence for a C-terminal structural motif in CCK2 receptor active peptide hormones. Stone SR, Giragossian C, Mierke DF, Jackson GE. Peptides; 2007 Nov 26; 28(11):2211-22. PubMed ID: 17950490 [Abstract] [Full Text] [Related] Page: [Next] [New Search]