These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
262 related items for PubMed ID: 9124291
61. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle. Watanabe D, Kanzaki K, Kuratani M, Matsunaga S, Yanaka N, Wada M. J Muscle Res Cell Motil; 2015 Jun; 36(3):275-86. PubMed ID: 25697123 [Abstract] [Full Text] [Related]
62. {alpha}-Adrenoceptor constrictor responses and their modulation in slow-twitch and fast-twitch mouse skeletal muscle. Lambert DG, Thomas GD. J Physiol; 2005 Mar 15; 563(Pt 3):821-9. PubMed ID: 15618269 [Abstract] [Full Text] [Related]
63. Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. I. Muscle and motor unit properties. Gordon T, Tyreman N, Rafuse VF, Munson JB. J Neurophysiol; 1997 May 15; 77(5):2585-604. PubMed ID: 9163378 [Abstract] [Full Text] [Related]
64. The rate of changes in tension within fused tetani of single motor units in rat medial gastrocnemius muscle. Celichowski J, Bichler E. J Physiol Pharmacol; 1998 Dec 15; 49(4):597-605. PubMed ID: 10069700 [Abstract] [Full Text] [Related]
65. Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice. Asmussen G, Schmalbruch I, Soukup T, Pette D. Exp Neurol; 2003 Dec 15; 184(2):758-66. PubMed ID: 14769368 [Abstract] [Full Text] [Related]
66. Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease. Hering T, Braubach P, Landwehrmeyer GB, Lindenberg KS, Melzer W. PLoS One; 2016 Dec 15; 11(11):e0166106. PubMed ID: 27820862 [Abstract] [Full Text] [Related]
67. Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. Reiser PJ, Kline WO, Vaghy PL. J Appl Physiol (1985); 1997 Apr 15; 82(4):1250-5. PubMed ID: 9104863 [Abstract] [Full Text] [Related]
68. A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle. Slade JM, Towse TF, Delano MC, Wiseman RW, Meyer RA. NMR Biomed; 2006 Aug 15; 19(5):573-80. PubMed ID: 16642462 [Abstract] [Full Text] [Related]
69. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Shoubridge EA, Radda GK. Am J Physiol; 1987 May 15; 252(5 Pt 1):C532-42. PubMed ID: 3578505 [Abstract] [Full Text] [Related]
70. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure. Bigard AX, Boehm E, Veksler V, Mateo P, Anflous K, Ventura-Clapier R. J Mol Cell Cardiol; 1998 Nov 15; 30(11):2391-401. PubMed ID: 9925374 [Abstract] [Full Text] [Related]
71. Exercise and suspension hypokinesia-induced alterations in mechanical properties of rat fast and slow-twitch skeletal muscles. Ertunc M, Atalay A, Yildirim M, Onur R. Acta Physiol Hung; 2010 Sep 15; 97(3):316-25. PubMed ID: 20843770 [Abstract] [Full Text] [Related]
72. Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. Shields RK, Law LF, Reiling B, Sass K, Wilwert J. J Appl Physiol (1985); 1997 May 15; 82(5):1499-507. PubMed ID: 9134899 [Abstract] [Full Text] [Related]
73. Possible mechanisms for the effect of protein sensitization on contractile function of fast and slow muscles in mice. Teplov AY, Grishin SN, Zefirov AL. Bull Exp Biol Med; 2009 May 15; 147(5):560-3. PubMed ID: 19907738 [Abstract] [Full Text] [Related]
74. Different effects of gradual vs. acute adenine nucleotide depletion on ATP cost of muscle contraction. Foley JM, Adams GR, Meyer RA. Am J Physiol; 1994 Nov 15; 267(5 Pt 1):C1177-84. PubMed ID: 7977681 [Abstract] [Full Text] [Related]
75. Age-dependent fatigue in single intact fast- and slow fibers from mouse EDL and soleus skeletal muscles. González E, Delbono O. Mech Ageing Dev; 2001 Jul 31; 122(10):1019-32. PubMed ID: 11389921 [Abstract] [Full Text] [Related]
76. Blood flow and metabolism during isometric contractions in cat skeletal muscle. Petrofsky JS, Phillips CA, Sawka MN, Hanpeter D, Stafford D. J Appl Physiol Respir Environ Exerc Physiol; 1981 Mar 31; 50(3):493-502. PubMed ID: 7251439 [Abstract] [Full Text] [Related]
77. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. J Appl Physiol (1985); 2000 Jun 31; 88(6):2131-7. PubMed ID: 10846027 [Abstract] [Full Text] [Related]
78. Measured and modeled properties of mammalian skeletal muscle: IV. dynamics of activation and deactivation. Brown IE, Loeb GE. J Muscle Res Cell Motil; 2000 Jan 31; 21(1):33-47. PubMed ID: 10813633 [Abstract] [Full Text] [Related]
79. Efficiency of fast- and slow-twitch muscles of the mouse performing cyclic contractions. Barclay CJ. J Exp Biol; 1994 Aug 31; 193():65-78. PubMed ID: 7964400 [Abstract] [Full Text] [Related]
80. Lower energy cost of skeletal muscle contractions in older humans. Tevald MA, Foulis SA, Lanza IR, Kent-Braun JA. Am J Physiol Regul Integr Comp Physiol; 2010 Mar 31; 298(3):R729-39. PubMed ID: 20032262 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]