These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Hazen TC, Chakraborty R, Fleming JM, Gregory IR, Bowman JP, Jimenez L, Zhang D, Pfiffner SM, Brockman FJ, Sayler GS. Arch Microbiol; 2009 Mar; 191(3):221-32. PubMed ID: 19034430 [Abstract] [Full Text] [Related]
5. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Bowman JP, Jiménez L, Rosario I, Hazen TC, Sayler GS. Appl Environ Microbiol; 1993 Aug; 59(8):2380-7. PubMed ID: 8368829 [Abstract] [Full Text] [Related]
6. Intrinsic bioremediation in a solvent-contaminated alluvial groundwater. Williams RA, Shuttle KA, Kunkler JL, Madsen EL, Hooper SW. J Ind Microbiol Biotechnol; 1997 Aug; 18(2-3):177-88. PubMed ID: 9134765 [Abstract] [Full Text] [Related]
7. Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. Paszczynski AJ, Paidisetti R, Johnson AK, Crawford RL, Colwell FS, Green T, Delwiche M, Lee H, Newby D, Brodie EL, Conrad M. Biodegradation; 2011 Nov; 22(6):1045-59. PubMed ID: 21360114 [Abstract] [Full Text] [Related]
11. Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater. Dobbins DC, Peltola J, Kustritz JM, Chresand TJ, Preston JC. J Air Waste Manag Assoc; 1995 Jan; 45(1):12-9. PubMed ID: 15658162 [Abstract] [Full Text] [Related]
12. Complete reductive dechlorination of trichloroethene by a groundwater microbial consortium. Bolesch DG, Nielsen RB, Keasling JD. Ann N Y Acad Sci; 1997 Nov 21; 829():97-102. PubMed ID: 9472315 [Abstract] [Full Text] [Related]
13. Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. Chu KH, Alvarez-Cohen L. Appl Environ Microbiol; 1998 Sep 21; 64(9):3451-7. PubMed ID: 9726896 [Abstract] [Full Text] [Related]
15. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Hopkins GD, Semprini L, McCarty PL. Appl Environ Microbiol; 1993 Jul 21; 59(7):2277-85. PubMed ID: 8357259 [Abstract] [Full Text] [Related]
16. [The biodegradation of trichloroethylene by a methanotrophic bacterium]. Shen R, Li S. Wei Sheng Wu Xue Bao; 1998 Feb 21; 38(1):63-9. PubMed ID: 12549391 [Abstract] [Full Text] [Related]
17. In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Takeuchi M, Nanba K, Iwamoto H, Nirei H, Kusuda T, Kazaoka O, Owaki M, Furuya K. Water Res; 2005 Jun 21; 39(11):2438-44. PubMed ID: 15955544 [Abstract] [Full Text] [Related]
20. Effects of aeration and organic loading rates on degradation of trichloroethylene in a methanogenic-methanotrophic coupled reactor. Lyew D, Guiot S. Appl Microbiol Biotechnol; 2003 May 21; 61(3):206-13. PubMed ID: 12698277 [Abstract] [Full Text] [Related] Page: [Next] [New Search]