These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Low pH induced shape changes and vesiculation of human erythrocytes. Gros M, Vrhovec S, Brumen M, Svetina S, Zeks B. Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418 [Abstract] [Full Text] [Related]
5. The influence of valinomycin induced membrane potential on erythrocyte shape. Glaser R, Gengnagel C, Donath J. Biomed Biochim Acta; 1991 Apr; 50(7):869-77. PubMed ID: 1759965 [Abstract] [Full Text] [Related]
6. The effect of ionic strength on cell volume, cell pH and cellular buffer capacity in human red blood cells. Dalmark M. Acta Biol Med Ger; 1981 Apr; 40(6):757-63. PubMed ID: 7324706 [Abstract] [Full Text] [Related]
7. The shape of red blood cells as a function of membrane potential and temperature. Glaser R. J Membr Biol; 1979 Dec 31; 51(3-4):217-28. PubMed ID: 43897 [Abstract] [Full Text] [Related]
12. Erythrocyte shape dynamics: influence of electrolyte conditions and membrane potential. Glaser R, Fujii T, Müller P, Tamura E, Herrmann A. Biomed Biochim Acta; 1987 Dec 31; 46(2-3):S327-33. PubMed ID: 3297051 [Abstract] [Full Text] [Related]
13. Chloride and water distribution in human red cells. Dalmark M. J Physiol; 1975 Aug 31; 250(1):65-84. PubMed ID: 240930 [Abstract] [Full Text] [Related]
16. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. Hladky SB, Rink TJ. J Physiol; 1976 Dec 31; 263(2):287-319. PubMed ID: 14255 [Abstract] [Full Text] [Related]