These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


263 related items for PubMed ID: 9140015

  • 1. Obligatory role of NO in glutamate-dependent hyperemia evoked from cerebellar parallel fibers.
    Yang G, Iadecola C.
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1155-61. PubMed ID: 9140015
    [Abstract] [Full Text] [Related]

  • 2. Permissive and obligatory roles of NO in cerebrovascular responses to hypercapnia and acetylcholine.
    Iadecola C, Zhang F.
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R990-1001. PubMed ID: 8897992
    [Abstract] [Full Text] [Related]

  • 3. Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP.
    Yang G, Iadecola C.
    Stroke; 1998 Feb; 29(2):499-507; discussion 507-8. PubMed ID: 9472896
    [Abstract] [Full Text] [Related]

  • 4. 7-Nitroindazole attenuates vasodilation from cerebellar parallel fiber stimulation but not acetylcholine.
    Iadecola C, Yang G, Xu S.
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R914-9. PubMed ID: 8967422
    [Abstract] [Full Text] [Related]

  • 5. Nitric oxide contributes to functional hyperemia in cerebellar cortex.
    Iadecola C, Li J, Ebner TJ, Xu X.
    Am J Physiol; 1995 May; 268(5 Pt 2):R1153-62. PubMed ID: 7539595
    [Abstract] [Full Text] [Related]

  • 6. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats.
    Yang G, Chen G, Ebner TJ, Iadecola C.
    Am J Physiol; 1999 Dec; 277(6):R1760-70. PubMed ID: 10600924
    [Abstract] [Full Text] [Related]

  • 7. Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex.
    Li J, Iadecola C.
    Neuropharmacology; 1994 Nov; 33(11):1453-61. PubMed ID: 7532829
    [Abstract] [Full Text] [Related]

  • 8. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex.
    Lindauer U, Megow D, Matsuda H, Dirnagl U.
    Am J Physiol; 1999 Aug; 277(2):H799-811. PubMed ID: 10444508
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Cerebellar vascular and synaptic responses in normal mice and in transgenics with Purkinje cell dysfunction.
    Yang G, Feddersen RM, Zhang F, Clark HB, Beitz AJ, Iadecola C.
    Am J Physiol; 1998 Feb; 274(2):R529-40. PubMed ID: 9486314
    [Abstract] [Full Text] [Related]

  • 11. Glutamate microinjections in cerebellar cortex reproduce cerebrovascular effects of parallel fiber stimulation.
    Yang G, Iadecola C.
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1568-75. PubMed ID: 8997354
    [Abstract] [Full Text] [Related]

  • 12. NOS activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats.
    Fabricius M, Rubin I, Bundgaard M, Lauritzen M.
    Am J Physiol; 1996 Nov; 271(5 Pt 2):H2035-44. PubMed ID: 8945923
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Neural mechanisms of blood flow regulation during synaptic activity in cerebellar cortex.
    Iadecola C, Li J, Xu S, Yang G.
    J Neurophysiol; 1996 Feb; 75(2):940-50. PubMed ID: 8714666
    [Abstract] [Full Text] [Related]

  • 15. Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: evidence for an involvement of endothelial nitric oxide.
    Zhang F, Xu S, Iadecola C.
    Neuroscience; 1995 Dec; 69(4):1195-204. PubMed ID: 8848107
    [Abstract] [Full Text] [Related]

  • 16. Superoxide-dependent cerebrovascular effects of homocysteine.
    Zhang F, Slungaard A, Vercellotti GM, Iadecola C.
    Am J Physiol; 1998 Jun; 274(6):R1704-11. PubMed ID: 9608025
    [Abstract] [Full Text] [Related]

  • 17. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
    Wang Q, Bryan RM, Pelligrino DA.
    Brain Res; 1998 May 18; 793(1-2):187-96. PubMed ID: 9630623
    [Abstract] [Full Text] [Related]

  • 18. Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase.
    Yang G, Zhang Y, Ross ME, Iadecola C.
    Am J Physiol Heart Circ Physiol; 2003 Jul 18; 285(1):H298-304. PubMed ID: 12623792
    [Abstract] [Full Text] [Related]

  • 19. The cerebrovascular response to elevated potassium--role of nitric oxide in the in vitro model of isolated rat middle cerebral arteries.
    Schuh-Hofer S, Lobsien E, Brodowsky R, Vogt J, Dreier JP, Klee R, Dirnagl U, Lindauer U.
    Neurosci Lett; 2001 Jun 22; 306(1-2):61-4. PubMed ID: 11403958
    [Abstract] [Full Text] [Related]

  • 20. L-NNA decreases cortical hyperemia and brain cGMP levels following CO2 inhalation in Sprague-Dawley rats.
    Irikura K, Maynard KI, Lee WS, Moskowitz MA.
    Am J Physiol; 1994 Aug 22; 267(2 Pt 2):H837-43. PubMed ID: 8067440
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.