These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 9142010

  • 1. Decreased myocyte tension development and calcium responsiveness in rat right ventricular pressure overload.
    Fan D, Wannenburg T, de Tombe PP.
    Circulation; 1997 May 06; 95(9):2312-7. PubMed ID: 9142010
    [Abstract] [Full Text] [Related]

  • 2. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length.
    McDonald KS, Moss RL.
    Circ Res; 1995 Jul 06; 77(1):199-205. PubMed ID: 7788878
    [Abstract] [Full Text] [Related]

  • 3. Reduced isotonic sarcomere shortening in rabbit right ventricular pressure overload hypertrophy.
    Hamrell BB, Hultgren PB.
    J Mol Cell Cardiol; 1992 Feb 06; 24(2):133-47. PubMed ID: 1533879
    [Abstract] [Full Text] [Related]

  • 4. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium.
    de Tombe PP, ter Keurs HE.
    J Physiol; 1992 Aug 06; 454():619-42. PubMed ID: 1474506
    [Abstract] [Full Text] [Related]

  • 5. Long-term angiotensin-converting enzyme inhibition with fosinopril improves depressed responsiveness to Ca2+ in myocytes from aortic-banded rats.
    Kagaya Y, Hajjar RJ, Gwathmey JK, Barry WH, Lorell BH.
    Circulation; 1996 Dec 01; 94(11):2915-22. PubMed ID: 8941121
    [Abstract] [Full Text] [Related]

  • 6. Sarcomere shortening velocity in pressure overload hypertrophied rabbit right ventricular myocardium at physiological sarcomere lengths.
    Hamrell BB, Dey SK.
    J Mol Cell Cardiol; 1993 Dec 01; 25(12):1483-500. PubMed ID: 8158666
    [Abstract] [Full Text] [Related]

  • 7. Determinants of velocity of sarcomere shortening in mammalian myocardium.
    ter Keurs HE, de Tombe PP.
    Adv Exp Med Biol; 1993 Dec 01; 332():649-64; discussion 664-5. PubMed ID: 8109376
    [Abstract] [Full Text] [Related]

  • 8. Recuperative potential of cardiac muscle following relief of pressure overload hypertrophy and right ventricular failure in the cat.
    Coulson RL, Yazdanfar S, Rubio E, Bove AA, Lemole GM, Spann JF.
    Circ Res; 1977 Jan 01; 40(1):41-9. PubMed ID: 137086
    [Abstract] [Full Text] [Related]

  • 9. Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction.
    Anand IS, Liu D, Chugh SS, Prahash AJ, Gupta S, John R, Popescu F, Chandrashekhar Y.
    Circulation; 1997 Dec 02; 96(11):3974-84. PubMed ID: 9403622
    [Abstract] [Full Text] [Related]

  • 10. Differential effects of length on maximum force production and myofibrillar ATPase activity in rat skinned cardiac muscle.
    Kentish JC, Stienen GJ.
    J Physiol; 1994 Feb 15; 475(1):175-84. PubMed ID: 8189390
    [Abstract] [Full Text] [Related]

  • 11. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS, Wolff MR, Moss RL.
    J Physiol; 1997 Jun 15; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [Abstract] [Full Text] [Related]

  • 12. Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats.
    Vannier C, Chevassus H, Vassort G.
    Cardiovasc Res; 1996 Sep 15; 32(3):580-6. PubMed ID: 8881518
    [Abstract] [Full Text] [Related]

  • 13. Calcium sensitivity of isometric tension is increased in canine experimental heart failure.
    Wolff MR, Whitesell LF, Moss RL.
    Circ Res; 1995 May 15; 76(5):781-9. PubMed ID: 7728995
    [Abstract] [Full Text] [Related]

  • 14. Cellular versus myocardial basis for the contractile dysfunction of hypertrophied myocardium.
    Mann DL, Urabe Y, Kent RL, Vinciguerra S, Cooper G.
    Circ Res; 1991 Feb 15; 68(2):402-15. PubMed ID: 1825035
    [Abstract] [Full Text] [Related]

  • 15. Role of myocardial hypertrophy on acute and chronic right ventricular performance in relation to chronic volume overload in a porcine model: relevance for the surgical management of tetralogy of Fallot.
    Bove T, Vandekerckhove K, Bouchez S, Wouters P, Somers P, Van Nooten G.
    J Thorac Cardiovasc Surg; 2014 Jun 15; 147(6):1956-65. PubMed ID: 24280710
    [Abstract] [Full Text] [Related]

  • 16. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis.
    Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH.
    Circulation; 1994 Sep 15; 90(3):1410-22. PubMed ID: 8087951
    [Abstract] [Full Text] [Related]

  • 17. Right ventricular contractile protein function in rats with left ventricular myocardial infarction.
    De Tombe PP, Wannenburg T, Fan D, Little WC.
    Am J Physiol; 1996 Jul 15; 271(1 Pt 2):H73-9. PubMed ID: 8760160
    [Abstract] [Full Text] [Related]

  • 18. Biochemical, mechanical and energetic characterization of right ventricular hypertrophy in the ferret heart.
    Baudet S, Kuznetsov A, Merciai N, Gorza L, Ventura-Clapier R.
    J Mol Cell Cardiol; 1994 Dec 15; 26(12):1573-86. PubMed ID: 7731052
    [Abstract] [Full Text] [Related]

  • 19. [Effects of interval training on calcium transient and contractile function of single ventricular myocyte in myocardial infarction adult rats].
    Bo WY, Li DG, Tian ZJ.
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2019 Feb 15; 35(2):121-125. PubMed ID: 31250601
    [Abstract] [Full Text] [Related]

  • 20. Role of microtubules in myocyte contractile dysfunction during cardiac hypertrophy in the rat.
    Ishibashi Y, Tsutsui H, Yamamoto S, Takahashi M, Imanaka-Yoshida K, Yoshida T, Urabe Y, Sugimachi M, Takeshita A.
    Am J Physiol; 1996 Nov 15; 271(5 Pt 2):H1978-87. PubMed ID: 8945917
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.