These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 9143468
1. Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Eur J Nucl Med; 1997 Mar; 24(3):299-304. PubMed ID: 9143468 [Abstract] [Full Text] [Related]
2. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. Toyama H, Ichise M, Liow JS, Modell KJ, Vines DC, Esaki T, Cook M, Seidel J, Sokoloff L, Green MV, Innis RB. J Nucl Med; 2004 Aug; 45(8):1398-405. PubMed ID: 15299067 [Abstract] [Full Text] [Related]
3. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, Margouleff D, Eidelberg D. Radiology; 1993 Jul; 188(1):131-6. PubMed ID: 8511286 [Abstract] [Full Text] [Related]
4. Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson's disease. Kuwert T, Hefter H, Scholz D, Milz M, Weiss P, Arendt G, Herzog H, Loken M, Hennerici M, Feinendegen LE. Eur J Nucl Med; 1992 Jul; 19(2):96-101. PubMed ID: 1563446 [Abstract] [Full Text] [Related]
5. A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET). Feng D, Wang X, Yan H. Comput Methods Programs Biomed; 1994 Nov; 45(3):175-86. PubMed ID: 7705075 [Abstract] [Full Text] [Related]
6. FDG-PET in early infancy: simplified quantification methods to measure cerebral glucose utilization. Suhonen-Polvi H, Ruotsalainen U, Kinnala A, Bergman J, Haaparanta M, Teräs M, M akel a P, Solin O, Wegelius U. J Nucl Med; 1995 Jul; 36(7):1249-54. PubMed ID: 7790951 [Abstract] [Full Text] [Related]
7. Measurement of regional cerebral glucose utilization with fluorine-18-FDG and PET in heterogeneous tissues: theoretical considerations and practical procedure. Lucignani G, Schmidt KC, Moresco RM, Striano G, Colombo F, Sokoloff L, Fazio F. J Nucl Med; 1993 Mar; 34(3):360-9. PubMed ID: 8441024 [Abstract] [Full Text] [Related]
8. A standardized blood sampling scheme in quantitative FDG-PET studies. Bentourkia M, Bol A, Ivanoiu A, Michel C, Coppens A, Sibomana M, Cosnard G, De Volder AG. IEEE Trans Med Imaging; 1999 May; 18(5):379-84. PubMed ID: 10416799 [Abstract] [Full Text] [Related]
9. PET studies of cerebral glucose metabolism in conscious rhesus macaques. Eberling JL, Roberts JA, De Manincor DJ, Brennan KM, Hanrahan SM, Vanbrocklin HF, Roos MS, Jagust WJ. Neurobiol Aging; 1995 May; 16(5):825-32. PubMed ID: 8532117 [Abstract] [Full Text] [Related]
10. Regional cerebral metabolic rate for glucose in subacute sclerosing panencephalitis. Yanai K, Iinuma K, Tada K, Miyabayashi S, Fukuda H, Ito M, Matsuzawa T. Eur J Pediatr; 1987 May; 146(3):288-9. PubMed ID: 3496222 [Abstract] [Full Text] [Related]
11. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. Schmidt K, Lucignani G, Moresco RM, Rizzo G, Gilardi MC, Messa C, Colombo F, Fazio F, Sokoloff L. J Cereb Blood Flow Metab; 1992 Sep; 12(5):823-34. PubMed ID: 1506447 [Abstract] [Full Text] [Related]
12. Cerebral glucose metabolic rates after 30 and 45 minute acquisitions: a comparative study. Kumar A, Braun A, Schapiro M, Grady C, Carson R, Herscovitch P. J Nucl Med; 1992 Dec; 33(12):2103-5. PubMed ID: 1460500 [Abstract] [Full Text] [Related]
13. An improved method to calculate cerebral metabolic rates of glucose using PET. Phillips RL, Chen CY, Wong DF, London ED. J Nucl Med; 1995 Sep; 36(9):1668-79. PubMed ID: 7658230 [Abstract] [Full Text] [Related]
14. Effects of percent thresholding on the extraction of [18F]fluorodeoxyglucose positron emission tomographic region-of-interest data. Rottenberg DA, Moeller JR, Strother SC, Dhawan V, Sergi ML. J Cereb Blood Flow Metab; 1991 Mar; 11(2):A83-8. PubMed ID: 1997493 [Abstract] [Full Text] [Related]
15. The metabolic topography of normal aging. Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, Grady C, Pietrini P, Eidelberg D. J Cereb Blood Flow Metab; 1996 May; 16(3):385-98. PubMed ID: 8621743 [Abstract] [Full Text] [Related]
16. Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling. Shimoji K, Ravasi L, Schmidt K, Soto-Montenegro ML, Esaki T, Seidel J, Jagoda E, Sokoloff L, Green MV, Eckelman WC. J Nucl Med; 2004 Apr; 45(4):665-72. PubMed ID: 15073264 [Abstract] [Full Text] [Related]
17. Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies. Hooper PK, Meikle SR, Eberl S, Fulham MJ. J Nucl Med; 1996 Jan; 37(1):128-36. PubMed ID: 8543982 [Abstract] [Full Text] [Related]
18. Temporal lobe metabolic differences in medication-free outpatients with schizophrenia via the PET-600. Nordahl TE, Kusubov N, Carter C, Salamat S, Cummings AM, O'Shora-Celaya L, Eberling J, Robertson L, Huesman RH, Jagust W, Budinger TF. Neuropsychopharmacology; 1996 Dec; 15(6):541-54. PubMed ID: 8946428 [Abstract] [Full Text] [Related]
19. Glucose metabolism in brain tumours can be estimated using [18F]2-fluorodeoxyglucose positron emission tomography and a population-derived input function scaled using a single arterialised venous blood sample. Brock CS, Young H, Osman S, Luthra SK, Jones T, Price PM. Int J Oncol; 2005 May; 26(5):1377-83. PubMed ID: 15809731 [Abstract] [Full Text] [Related]